并发处理的广泛应用是使得Amdahl定律代替摩尔定律成为计算机性能发展源动力的根本原因,也是人类“压榨”计算机运算能力的最有力武器。
多任务处理在现代计算机操作系统中几乎已是一项必备的功能了。在许多情况下,让计算机同时去做几件事情,不仅是因为计算机的运算能力强大了,还有一个很重要的原因是计算机的运算速度与它的存储和通信子系统速度的差距太大,大量的时间都花费在磁盘I/O、网络通信或者数据库访问上。如果不希望处理器在大部分时间里都处于等待其他资源的状态,就必须使用一些手段去把处理器的运算能力“压榨”出来,否则就会造成很大的浪费,而让计算机同时处理几项任务则是最容易想到、也被证明是非常有效的“压榨”手段。
除了充分利用计算机处理器的能力外,一个服务端同时对多个客户端提供服务则是另一个更具体的并发应用场景。衡量一个服务性能的高低好坏,每秒事务处理数(Transactions Per Second,TPS)是最重要的指标之一,它代表着一秒内服务端平均能响应的请求总数,而TPS值与程序的并发能力又有非常密切的关系。对于计算量相同的任务,程序线程并发协调得越有条不紊,效率自然就会越高;反之,线程之间频繁阻塞甚至死锁,将会大大降低程序的并发能力。
一、JVM 内存模型
硬件的效率与一致性
“让计算机并发执行若干个运算任务”与“更充分地利用计算机处理器的效能”之间的因果关系,看起来顺理成章,实际上它们之间的关系并没有想象中的那么简单,其中一个重要的复杂性来源是绝大多数的运算任务都不可能只靠处理器“计算”就能完成,处理器至少要与内存交互,如读取运算数据、存储运算结果等,这个I/O操作是很难消除的(无法仅靠寄存器来完成所有运算任务)。由于计算机的存储设备与处理器的运算速度有几个数量级的差距,所以现代计算机系统都不得不加入一层读写速度尽可能接近处理器运算速度的高速缓存(Cache)来作为内存与处理器之间的缓冲:将运算需要使用到的数据复制到缓存中,让运算能快速进行,当运算结束后再从缓存同步回内存之中,这样处理器就无须等待缓慢的内存读写了。
基于高速缓存的存储交互很好地解决了处理器与内存的速度矛盾,但是也为计算机系统带来更高的复杂度,因为它引入了一个新的问题:缓存一致性(Cache Coherence)。在多处理器系统中,每个处理器都有自己的高速缓存,而它们又共享同一主内存(Main Memory),如下图所示。当多个处理器的运算任务都涉及同一块主内存区域时,将可能导致各自的缓存数据不一致,如果真的发生这种情况,那同步回到主内存时以谁的缓存数据为准呢?为了解决一致性的问题,需要各个处理器访问缓存时都遵循一些协议,在读写时要根据协议来进行操作,这类协议有MSI、MESI(Illinois Protocol)、MOSI、Synapse、Firefly及Dragon Protocol等。在本文中将会多次提到的“内存模型”一词,可以理解为在特定的操作协议下,对特定的内存或高速缓存进行读写访问的过程抽象。不同架构的物理机器可以拥有不一样的内存模型,而Java虚拟机也有自己的内存模型,并且这里介绍的内存访问操作与硬件的缓存访问操作具有很高的可比性。

除了增加高速缓存之外,为了使得处理器内部的运算单元能尽量被充分利用,处理器可能会对输入代码进行乱序执行(Out-Of-Order Execution)优化,处理器会在计算之后将乱序执行的结果重组,保证该结果与顺序执行的结果是一致的,但并不保证程序中各个语句计算的先后顺序与输入代码中的顺序一致,因此,如果存在一个计算任务依赖另外一个计算任务的中间结果,那么其顺序性并不能靠代码的先后顺序来保证。与处理器的乱序执行优化类似,Java虚拟机的即时编译器中也有类似的指令重排序(Instruction Reorder)优化。
内存模型
为了保证共享内存的正确性(可见性、有序性、原子性),内存模型定义了共享内存系统中多线程程序读写操作行为的规范。通过这些规则来规范对内存的读写操作,从而保证指令执行的正确性。它与处理器有关、与缓存有关、与并发有关、与编译器也有关。他解决了CPU多级缓存、处理器优化、指令重排等导致的内存访问问题,保证了并发场景下的一致性、原子性和有序性。
内存模型解决并发问题主要采用两种方式:限制处理器优化和使用内存屏障。
Java内存模型
Java虚拟机规范中试图定义一种Java内存模型(Java Memory Model,JMM)来屏蔽掉各种硬件和操作系统的内存访问差异,以实现让Java程序在各种平台下都能达到一致的内存访问效果。在此之前,主流程序语言(如C/C++等)直接使用物理硬件和操作系统的内存模型,因此,会由于不同平台上内存模型的差异,有可能导致程序在一套平台上并发完全正常,而在另外一套平台上并发访问却经常出错,因此在某些场景就必须针对不同的平台来编写程序。
简而言之,Java 内存模型就是一种符合内存模型规范的,屏蔽了各种硬件和操作系统的访问差异的,保证 了Java 程序在各种平台下对内存的访问都能保证效果一致的机制及规范。
主内存与工作内存
Java内存模型的主要目标是定义程序中各个变量的访问规则,即在虚拟机中将变量存储到内存和从内存中取出变量这样的底层细节。此处的变量(Variables)与Java编程中所说的变量有所区别,它包括了实例字段、静态字段和构成数组对象的元素,但不包括局部变量与方法参数,因为后者是线程私有的,不会被共享,自然就不会存在竞争问题。为了获得较好的执行效能,Java内存模型并没有限制执行引擎使用处理器的特定寄存器或缓存来和主内存进行交互,也没有限制即时编译器进行调整代码执行顺序这类优化措施。
Java内存模型规定了所有的变量都存储在主内存(Main Memory)中(此处的主内存与介绍物理硬件时的主内存名字一样,两者也可以互相类比,但此处仅是虚拟机内存的一部分)。每条线程还有自己的工作内存(Working Memory,可与前面讲的处理器高速缓存类比),线程的工作内存中保存了被该线程使用到的变量的主内存副本拷贝,线程对变量的所有操作(读取、赋值等)都必须在工作内存中进行,而不能直接读写主内存中的变量。不同的线程之间也无法直接访问对方工作内存中的变量,线程间变量值的传递均需要通过主内存来完成,线程、主内存、工作内存三者的交互关系如下图所示。

这里所讲的主内存、工作内存与Java内存区域中的Java堆、栈、方法区等并不是同一个层次的内存划分,这两者基本上是没有关系的,如果两者一定要勉强对应起来,那从变量、主内存、工作内存的定义来看,主内存主要对应于Java堆中的对象实例数据部分,而工作内存则对应于虚拟机栈中的部分区域。从更低层次上说,主内存就直接对应于物理硬件的内存,而为了获取更好的运行速度,虚拟机(甚至是硬件系统本身的优化措施)可能会让工作内存优先存储于寄存器和高速缓存中,因为程序运行时主要访问读写的是工作内存。
内存间交互操作
关于主内存与工作内存之间具体的交互协议,即一个变量如何从主内存拷贝到工作内存、如何从工作内存同步回主内存之类的实现细节,Java内存模型中定义了以下8种操作来完成,虚拟机实现时必须保证下面提及的每一种操作都是原子的、不可再分的。
lock(锁定):作用于主内存的变量,它把一个变量标识为一条线程独占的状态。
unlock(解锁):作用于主内存的变量,它把一个处于锁定状态的变量释放出来,释放后的变量才可以被其他线程锁定。
read(读取):作用于主内存的变量,它把一个变量的值从主内存传输到线程的工作内存中,以便随后的load动作使用。
load(载入):作用于工作内存的变量,它把read操作从主内存中得到的变量值放入工作内存的变量副本中。
use(使用):作用于工作内存的变量,它把工作内存中一个变量的值传递给执行引擎,每当虚拟机遇到一个需要使用到变量的值的字节码指令时将会执行这个操作。
assign(赋值):作用于工作内存的变量,它把一个从执行引擎接收到的值赋给工作内存的变量,每当虚拟机遇到一个给变量赋值的字节码指令时执行这个操作。
store(存储):作用于工作内存的变量,它把工作内存中一个变量的值传送到主内存中,以便随后的write操作使用。
write(写入):作用于主内存的变量,它把store操作从工作内存中得到的变量的值放入主内存的变量中。
如果要把一个变量从主内存复制到工作内存,那就要顺序地执行read和load操作,如果要把变量从工作内存同步回主内存,就要顺序地执行store和write操作。注意,Java内存模型只要求上述两个操作必须按顺序执行,而没有保证是连续执行。也就是说,read与load之间、store与write之间是可插入其他指令的,如对主内存中的变量a、b进行访问时,一种可能出现顺序是read a、read b、load b、load a。除此之外,Java内存模型还规定了在执行上述8种基本操作时必须满足如下规则:
不允许read和load、store和write操作之一单独出现,即不允许一个变量从主内存读取了但工作内存不接受,或者从工作内存发起回写了但主内存不接受的情况出现。
不允许一个线程丢弃它的最近的assign操作,即变量在工作内存中改变了之后必须把该变化同步回主内存。
不允许一个线程无原因地(没有发生过任何assign操作)把数据从线程的工作内存同步回主内存中。
一个新的变量只能在主内存中“诞生”,不允许在工作内存中直接使用一个未被初始化(load或assign)的变量,换句话说,就是对一个变量实施use、store操作之前,必须先执行过了assign和load操作。
一个变量在同一个时刻只允许一条线程对其进行lock操作,但lock操作可以被同一条线程重复执行多次,多次执行lock后,只有执行相同次数的unlock操作,变量才会被解锁。
如果对一个变量执行lock操作,那将会清空工作内存中此变量的值,在执行引擎使用这个变量前,需要重新执行load或assign操作初始化变量的值。
如果一个变量事先没有被lock操作锁定,那就不允许对它执行unlock操作,也不允许去unlock一个被其他线程锁定住的变量。
对一个变量执行unlock操作之前,必须先把此变量同步回主内存中(执行store、write操作)。
对于volatile型变量的特殊规则
当一个变量定义为volatile之后,它将具备两种特性,第一是保证此变量对所有线程的可见性,这里的“可见性”是指当一条线程修改了这个变量的值,新值对于其他线程来说是可以立即得知的。而普通变量不能做到这一点,普通变量的值在线程间传递均需要通过主内存来完成,例如,线程A修改一个普通变量的值,然后向主内存进行回写,另外一条线程B在线程A回写完成了之后再从主内存进行读取操作,新变量值才会对线程B可见。
关于volatile变量的可见性,经常会被开发人员误解,认为以下描述成立:“volatile变量对所有线程是立即可见的,对volatile变量所有的写操作都能立刻反应到其他线程之中,换句话说,volatile变量在各个线程中是一致的,所以基于volatile变量的运算在并发下是安全的”。这句话的论据部分并没有错,但是其论据并不能得出“基于volatile变量的运算在并发下是安全的”这个结论。volatile变量在各个线程的工作内存中不存在一致性问题(在各个线程的工作内存中,volatile变量也可以存在不一致的情况,但由于每次使用之前都要先刷新,执行引擎看不到不一致的情况,因此可以认为不存在一致性问题),但是Java里面的运算并非原子操作,导致volatile变量的运算在并发下一样是不安全的,我们可以通过一段简单的演示来说明原因,请看下面代码中的例子。
1 | public class VolatileTest { |
这段代码发起了20个线程,每个线程对race变量进行10000次自增操作,如果这段代码能够正确并发的话,最后输出的结果应该是200000。读者运行完这段代码之后,并不会获得期望的结果,而且会发现每次运行程序,输出的结果都不一样,都是一个小于200000的数字,这是为什么呢?
问题就出现在自增运算”race++”之中,我们用Javap反编译这段代码后会得到下面的代码,发现只有一行代码的increase()方法在Class文件中是由4条字节码指令构成的(return指令不是由race++产生的,这条指令可以不计算),从字节码层面上很容易就分析出并发失败的原因了:当getstatic指令把race的值取到操作栈顶时,volatile关键字保证了race的值在此时是正确的,但是在执行iconst_1、iadd这些指令的时候,其他线程可能已经把race的值加大了,而在操作栈顶的值就变成了过期的数据,所以putstatic指令执行后就可能把较小的race值同步回主内存之中。
1 | public static void increase(); |
客观地说,在此使用字节码来分析并发问题,仍然是不严谨的,因为即使编译出来只有一条字节码指令,也并不意味执行这条指令就是一个原子操作。一条字节码指令在解释执行时,解释器将要运行许多行代码才能实现它的语义,如果是编译执行,一条字节码指令也可能转化成若干条本地机器码指令,此处使用-XX:+PrintAssembly参数输出反汇编来分析会更加严谨一些,但考虑到读者阅读的方便,并且字节码已经能说明问题,所以此处使用字节码来分析。
由于volatile变量只能保证可见性,在不符合以下两条规则的运算场景中,我们仍然要通过加锁(使用synchronized或java.util.concurrent中的原子类)来保证原子性。
运算结果并不依赖变量的当前值,或者能够确保只有单一的线程修改变量的值。
变量不需要与其他的状态变量共同参与不变约束。
使用volatile变量的第二个语义是禁止指令重排序优化,普通的变量仅仅会保证在该方法的执行过程中所有依赖赋值结果的地方都能获取到正确的结果,而不能保证变量赋值操作的顺序与程序代码中的执行顺序一致。因为在一个线程的方法执行过程中无法感知到这点,这也就是Java内存模型中描述的所谓的“线程内表现为串行的语义”(Within-Thread As-If-Serial Semantics)。
(待完善)
对于long和double型变量的特殊规则
Java内存模型要求lock、unlock、read、load、assign、use、store、write这8个操作都具有原子性,但是对于64位的数据类型(long和double),在模型中特别定义了一条相对宽松的规定:允许虚拟机将没有被volatile修饰的64位数据的读写操作划分为两次32位的操作来进行,即允许虚拟机实现选择可以不保证64位数据类型的load、store、read和write这4个操作的原子性,这点就是所谓的long和double的非原子性协定(Nonatomic Treatment ofdouble and long Variables)。
如果有多个线程共享一个并未声明为volatile的long或double类型的变量,并且同时对它们进行读取和修改操作,那么某些线程可能会读取到一个既非原值,也不是其他线程修改值的代表了“半个变量”的数值。
不过这种读取到“半个变量”的情况非常罕见(在目前商用Java虚拟机中不会出现),因为Java内存模型虽然允许虚拟机不把long和double变量的读写实现成原子操作,但允许虚拟机选择把这些操作实现为具有原子性的操作,而且还“强烈建议”虚拟机这样实现。在实际开发中,目前各种平台下的商用虚拟机几乎都选择把64位数据的读写操作作为原子操作来对待,因此我们在编写代码时一般不需要把用到的long和double变量专门声明为volatile。
原子性、可见性与有序性
Java内存模型是围绕着在并发过程中如何处理原子性、可见性和有序性这3个特征来建立的,我们逐个来看一下哪些操作实现了这3个特性。
原子性(Atomicity):原子性是指一个操作是不可中断的。即使是在多个线程一起执行的时候,一个操作一旦开始,就不会被其他线程干扰。由Java内存模型来直接保证的原子性变量操作包括read、load、assign、use、store和write,我们大致可以认为基本数据类型的读写是具备原子性的(例外就是long和double的非原子性协定,读者只要知道这件事情就可以了,无须太过在意这些几乎不会发生的例外情况)。
如果应用场景需要一个更大范围的原子性保证(经常会遇到),Java内存模型还提供了lock和unlock操作来满足这种需求,尽管虚拟机未把lock和unlock操作直接开放给用户使用,但是却提供了更高层次的字节码指令monitorenter和monitorexit来隐式地使用这两个操作,这两个字节码指令反映到Java代码中就是同步块——synchronized关键字,因此在synchronized块之间的操作也具备原子性。
即在一个操作中就是cpu不可以在中途暂停然后再调度,既不被中断操作,要不执行完成,要不就不执行。例如JDK8 以前的HashMap在扩容时,由于没有保证原子性,所以会出现链表首尾相连的情况导致cpu百分百占用。
可见性(Visibility):可见性是指当一个线程修改了某一个共享变量的值,其他线程是否能够立即知道这个修改。Java内存模型是通过在变量修改后将新值同步回主内存,在变量读取前从主内存刷新变量值这种依赖主内存作为传递媒介的方式来实现可见性的,无论是普通变量还是volatile变量都是如此,普通变量与volatile变量的区别是,volatile的特殊规则保证了新值能立即同步到主内存,以及每次使用前立即从主内存刷新。因此,可以说volatile保证了多线程操作时变量的可见性,而普通变量则不能保证这一点。
除了volatile之外,Java还有两个关键字能实现可见性,即synchronized和final。同步块的可见性是由“对一个变量执行unlock操作之前,必须先把此变量同步回主内存中(执行store、write操作)”这条规则获得的,而final关键字的可见性是指:被final修饰的字段在构造器中一旦初始化完成,并且构造器没有把”this”的引用传递出去(this引用逃逸是一件很危险的事情,其他线程有可能通过这个引用访问到“初始化了一半”的对象),那在其他线程中就能看见final字段的值。
有序性(Ordering):对于一个线程的执行代码而言,我们总是习惯地认为代码的执行是从先往后,依次执行的。这么理解也不能说完全错误,因为就一个线程内而言,确实会表现成这样。但是,在并发时,程序的执行可能就会出现乱序。给人直观的感觉就是:写在前面的代码,会在后面执行。有序性问题的原因是因为程序在执行时,可能会进行指令重排,重排后的指令与原指令的顺序未必一致。Java内存模型的有序性在前面讲解volatile时也详细地讨论过了,Java程序中天然的有序性可以总结为一句话:如果在本线程内观察,所有的操作都是有序的;如果在一个线程中观察另一个线程,所有的操作都是无序的。前半句是指“线程内表现为串行的语义”(Within-Thread As-If-Serial Semantics),后半句是指“指令重排序”现象和“工作内存与主内存同步延迟”现象。
Java语言提供了volatile和synchronized两个关键字来保证线程之间操作的有序性,volatile关键字本身就包含了禁止指令重排序的语义,而synchronized则是由“一个变量在同一个时刻只允许一条线程对其进行lock操作”这条规则获得的,这条规则决定了持有同一个锁的两个同步块只能串行地进入。
先行发生原则
如果Java内存模型中所有的有序性都仅仅靠volatile和synchronized来完成,那么有一些操作将会变得很烦琐,但是我们在编写Java并发代码的时候并没有感觉到这一点,这是因为Java语言中有一个“先行发生”(happens-before)的原则。这个原则非常重要,它是判断数据是否存在竞争、线程是否安全的主要依据,指令重排是不会违背这些原则的,依靠这个原则,我们可以通过几条规则一揽子地解决并发环境下两个操作之间是否可能存在冲突的所有问题。
先行发生是Java内存模型中定义的两项操作之间的偏序关系,如果说操作A先行发生于操作B,其实就是说在发生操作B之前,操作A产生的影响能被操作B观察到,“影响”包括修改了内存中共享变量的值、发送了消息、调用了方法等。
下面是Java内存模型下一些“天然的”先行发生关系,这些先行发生关系无须任何同步器协助就已经存在,可以在编码中直接使用。如果两个操作之间的关系不在此列,并且无法从下列规则推导出来的话,它们就没有顺序性保障,虚拟机可以对它们随意地进行重排序。
程序次序规则(Program Order Rule):在一个线程内,按照程序代码顺序,书写在前面的操作先行发生于书写在后面的操作。准确地说,应该是控制流顺序而不是程序代码顺序,因为要考虑分支、循环等结构。
管程锁定规则(Monitor Lock Rule):一个unlock操作先行发生于后面对同一个锁的lock操作。这里必须强调的是同一个锁,而“后面”是指时间上的先后顺序。
volatile变量规则(Volatile Variable Rule):对一个volatile变量的写操作先行发生于后面对这个变量的读操作,这里的“后面”同样是指时间上的先后顺序。
线程启动规则(Thread Start Rule):Thread对象的start()方法先行发生于此线程的每一个动作。
线程终止规则(Thread Termination Rule):线程中的所有操作都先行发生于对此线程的终止检测,我们可以通过Thread.join()方法结束、Thread.isAlive()的返回值等手段检测到线程已经终止执行。
线程中断规则(Thread Interruption Rule):对线程interrupt()方法的调用先行发生于被中断线程的代码检测到中断事件的发生,可以通过Thread.interrupted()方法检测到是否有中断发生。
对象终结规则(Finalizer Rule):一个对象的初始化完成(构造函数执行结束)先行发生于它的finalize()方法的开始。
传递性(Transitivity):如果操作A先行发生于操作B,操作B先行发生于操作C,那就可以得出操作A先行发生于操作C的结论。
面试题
什么是 Java 内存模型?
Java 内存模型就是一种符合内存模型规范的,屏蔽了各种硬件和操作系统的访问差异的,保证 了 Java 程序在各种平台下对内存的访问都能保证效果一致的机制及规范。
Java 内存模型的主要目标是定义程序中各个变量的访问规则,即在虚拟机中将变量存储到内存和从内存中取出变量这样的底层细节。
Java 内存模型规定了所有的变量都存储在主内存中,每条线程还有自己的工作内存,线程的工作内存中保存了该线程中是用到的变量的主内存副本拷贝,线程对变量的所有操作都必须在工作内存中进行,而不能直接读写主内存。不同的线程之间也无法直接访问对方工作内存中的变量,线程间变量的传递均需要自己的工作内存和主存之间进行数据同步进行。
而 JMM 就作用于工作内存和主存之间数据同步过程。他规定了如何做数据同步以及什么时候做数据同步。
简而言之,JMM 是一种规范,目的是解决由于多线程通过共享内存进行通信时,存在的本地内存数据不一致、编译器会对代码指令重排序、处理器会对代码乱序执行等带来的问题。
二、线程基础知识
线程与进程的区别
- 进程和线程是不同的操作系统管理资源的方式,进程是系统进行资源分配和调度的一个独立单位,线程是CPU进行资源分配和调度的基本单位。
- 进程有自己的独立地址空间,每启动一个进程,系统就会为它分配地址空间,建立数据表来维护代码段、堆栈段和数据段,这种操作非常昂贵。而线程是共享进程中的数据的,使用相同的地址空间,因此CPU切换一个线程的花费远比进程要小很多,同时创建一个线程的开销也比进程要小很多。
- 线程之间的通信更方便,同一进程下的线程共享全局变量、静态变量等数据,而进程之间的通信需要以通信的方式(IPC)进行。不过如何处理好同步与互斥是编写多线程程序的难点。
- 但是多进程程序更健壮,多线程程序只要有一个线程死掉,整个进程也死掉了,而一个进程死掉并不会对另外一个进程造成影响,因为进程有自己独立的地址空间。所以多进程的程序比多线程的程序更健壮。但进程切换时,耗费资源较大,效率要差一些。
Java 创建线程的方式
继承Thread类创建线程类
- 重写run方法。该run()方法的方法体就代表了线程需要完成的任务。
- 创建Thread子类的实例。
- 调用线程对象的start()方法来启动该线程。
实现Runnable接口创建线程类
- 定义Runnable的实现类,重写run()方法。
- 创建Runnable实现类的实例,并以此作为Thread的target来创建对象,该对象才是真正的线程对象。
使用Callable和Future创建线程
- 创建Callable接口的实现类,并实现Call()方法,该方法将作为线程执行体,且该方法有返回值,再创建Callable实现类的实例。
- 使用FutureTask来包装Callable对象,该FutureTask对象封装了该Callable对象的call方法的返回值。
- 使用FutureTask对象作为Thread对象的target创建并启动新线程。
- 调用FutureTask对象的get()方法来获取子线程执行结束后的返回值。
状态转换
Java语言定义了5种线程状态,在任意一个时间点,一个线程只能有且只有其中的一种状态,这5种状态如下。
新建(New):创建后尚未启动的线程处于这种状态。
运行(Runable):Runable包括了操作系统线程状态中的Running和Ready,也就是处于此状态的线程有可能正在执行,也有可能正在等待着CPU为它分配执行时间。
无限期等待(Waiting):处于这种状态的线程不会被分配CPU执行时间,它们要等待被其他线程显式地唤醒。以下方法会让线程陷入无限期的等待状态:
没有设置Timeout参数的Object.wait()方法。
没有设置Timeout参数的Thread.join()方法。
LockSupport.park()方法。
限期等待(Timed Waiting):处于这种状态的线程也不会被分配CPU执行时间,不过无须等待被其他线程显式地唤醒,在一定时间之后它们会由系统自动唤醒。以下方法会让线程进入限期等待状态:
Thread.sleep()方法。
设置了Timeout参数的Object.wait()方法。
设置了Timeout参数的Thread.join()方法。
LockSupport.parkNanos()方法。
LockSupport.parkUntil()方法。
阻塞(Blocked):线程被阻塞了,“阻塞状态”与“等待状态”的区别是:“阻塞状态”在等待着获取到一个排他锁,这个事件将在另外一个线程放弃这个锁的时候发生;而“等待状态”则是在等待一段时间,或者唤醒动作的发生。在程序等待进入同步区域的时候,线程将进入这种状态。
结束(Terminated):已终止线程的线程状态,线程已经结束执行。
上述5种状态在遇到特定事件发生的时候将会互相转换,它们的转换关系如下图所示。(图片来自网络)

并行与并发的区别
并发和并行都可以表示多个任务一起执行,但是偏重点不同。并发偏重于多个任务交替执行,而多个任务之间有可能还是串行的。而并行是真正意义上的“同时执行”。
严格意义上来说,并行的多个任务是真实的同时执行,而对于并发来说,这个过程只是交替的,一会儿运行任务A一会儿执行任务B,系统会不停地在两者间切换。但对于外部观察者来说,即使多个任务之间是串行并发的,也会造成多任务间是并行执行的错觉。
临界区
临界区用来表示一种公共资源或者说是共享数据,可以被多个线程使用。但是每一次,只能有一个线程使用它,一旦临界区资源被占用,其他线程要想使用这个资源,就必须等待。
面试点
wait()方法会释放CPU执行权和占有的锁。
sleep(long)方法仅释放CPU使用权,锁仍然占用;线程被放入超时等待队列,与yield相比,它会使线程较长时间得不到运行。
yield()方法仅释放CPU执行权,锁仍然占用,线程会被放入就绪队列,会在短时间内再次执行。
wait和notify必须配套使用,即必须使用同一把锁调用;
wait和notify必须放在一个同步块中
调用wait和notify的对象必须是他们所处同步块的锁对象。
三、线程安全的实现方法
互斥同步
互斥同步(Mutual Exclusion&Synchronization)是常见的一种并发正确性保障手段。同步是指在多个线程并发访问共享数据时,保证共享数据在同一个时刻只被一个(或者是一些,使用信号量的时候)线程使用。而互斥是实现同步的一种手段,临界区(Critical Section)、互斥量(Mutex)和信号量(Semaphore)都是主要的互斥实现方式。因此,在这4个字里面,互斥是因,同步是果;互斥是方法,同步是目的。
在Java中,最基本的互斥同步手段就是synchronized关键字,synchronized关键字经过编译之后,会在同步块的前后分别形成monitorenter和monitorexit这两个字节码指令,这两个字节码都需要一个reference类型的参数来指明要锁定和解锁的对象。如果Java程序中的synchronized明确指定了对象参数,那就是这个对象的reference;如果没有明确指定,那就根据synchronized修饰的是实例方法还是类方法,去取对应的对象实例或Class对象来作为锁对象。
根据虚拟机规范的要求,在执行monitorenter指令时,首先要尝试获取对象的锁。如果这个对象没被锁定,或者当前线程已经拥有了那个对象的锁,把锁的计数器加1,相应的,在执行monitorexit指令时会将锁计数器减1,当计数器为0时,锁就被释放。如果获取对象锁失败,那当前线程就要阻塞等待,直到对象锁被另外一个线程释放为止。
在虚拟机规范对monitorenter和monitorexit的行为描述中,有两点是需要特别注意的。首先,synchronized同步块对同一条线程来说是可重入的,不会出现自己把自己锁死的问题。其次,同步块在已进入的线程执行完之前,会阻塞后面其他线程的进入。Java的线程是映射到操作系统的原生线程之上的,如果要阻塞或唤醒一个线程,都需要操作系统来帮忙完成,这就需要从用户态转换到核心态中,因此状态转换需要耗费很多的处理器时间。对于代码简单的同步块(如被synchronized修饰的getter()或setter()方法),状态转换消耗的时间有可能比用户代码执行的时间还要长。所以synchronized是Java语言中一个重量级(Heavyweight)的操作,有经验的程序员都会在确实必要的情况下才使用这种操作。而虚拟机本身也会进行一些优化,譬如在通知操作系统阻塞线程之前加入一段自旋等待过程,避免频繁地切入到核心态之中。
除了synchronized之外,我们还可以使用java.util.concurrent(下文称J.U.C)包中的重入锁(ReentrantLock)来实现同步,在基本用法上,ReentrantLock与synchronized很相似,他们都具备一样的线程重入特性,只是代码写法上有点区别,一个表现为API层面的互斥锁(lock()和unlock()方法配合try/finally语句块来完成),另一个表现为原生语法层面的互斥锁。不过,相比synchronized,ReentrantLock增加了一些高级功能,主要有以下3项:等待可中断、可实现公平锁,以及锁可以绑定多个条件。
等待可中断是指当持有锁的线程长期不释放锁的时候,正在等待的线程可以选择放弃等待,改为处理其他事情,可中断特性对处理执行时间非常长的同步块很有帮助。
公平锁是指多个线程在等待同一个锁时,必须按照申请锁的时间顺序来依次获得锁;而非公平锁则不保证这一点,在锁被释放时,任何一个等待锁的线程都有机会获得锁。synchronized中的锁是非公平的,ReentrantLock默认情况下也是非公平的,但可以通过带布尔值的构造函数要求使用公平锁。
锁绑定多个条件是指一个ReentrantLock对象可以同时绑定多个Condition对象,而在synchronized中,锁对象的wait()和notify()或notifyAll()方法可以实现一个隐含的条件,如果要和多于一个的条件关联的时候,就不得不额外地添加一个锁,而ReentrantLock则无须这样做,只需要多次调用newCondition()方法即可。
JDK 1.6中加入了很多针对锁的优化措施,JDK 1.6发布之后,synchronized与ReentrantLock的性能基本上是完全持平了。因此,如果程序是使用JDK 1.6或以上部署的话,性能因素就不再是选择ReentrantLock的理由了,虚拟机在未来的性能改进中肯定也会更加偏向于原生的synchronized,所以还是提倡在synchronized能实现需求的情况下,优先考虑使用synchronized来进行同步。
非阻塞同步
互斥同步最主要的问题就是进行线程阻塞和唤醒所带来的性能问题,因此这种同步也称为阻塞同步(Blocking Synchronization)。从处理问题的方式上说,互斥同步属于一种悲观的并发策略,总是认为只要不去做正确的同步措施(例如加锁),那就肯定会出现问题,无论共享数据是否真的会出现竞争,它都要进行加锁(这里讨论的是概念模型,实际上虚拟机会优化掉很大一部分不必要的加锁)、用户态核心态转换、维护锁计数器和检查是否有被阻塞的线程需要唤醒等操作。随着硬件指令集的发展,我们有了另外一个选择:基于冲突检测的乐观并发策略,通俗地说,就是先进行操作,如果没有其他线程争用共享数据,那操作就成功了;如果共享数据有争用,产生了冲突,那就再采取其他的补偿措施(最常见的补偿措施就是不断地重试,直到成功为止),这种乐观的并发策略的许多实现都不需要把线程挂起,因此这种同步操作称为非阻塞同步(Non-Blocking Synchronization)。
为什么笔者说使用乐观并发策略需要“硬件指令集的发展”才能进行呢?因为我们需要操作和冲突检测这两个步骤具备原子性,靠什么来保证呢?如果这里再使用互斥同步来保证就失去意义了,所以我们只能靠硬件来完成这件事情,硬件保证一个从语义上看起来需要多次操作的行为只通过一条处理器指令就能完成,这类指令常用的有:
测试并设置(Test-and-Set)。
获取并增加(Fetch-and-Increment)。
交换(Swap)。
比较并交换(Compare-and-Swap,下文称CAS)。
加载链接/条件存储(Load-Linked/Store-Conditional,下文称LL/SC)。
其中,前面的3条是20世纪就已经存在于大多数指令集之中的处理器指令,后面的两条是现代处理器新增的,而且这两条指令的目的和功能是类似的。在IA64、x86指令集中有cmpxchg指令完成CAS功能,在sparc-TSO也有casa指令实现,而在ARM和PowerPC架构下,则需要使用一对ldrex/strex指令来完成LL/SC的功能。
CAS指令需要有3个操作数,分别是内存位置(在Java中可以简单理解为变量的内存地址,用V表示)、旧的预期值(用A表示)和新值(用B表示)。CAS指令执行时,当且仅当V符合旧预期值A时,处理器用新值B更新V的值,否则它就不执行更新,但是无论是否更新了V的值,都会返回V的旧值,上述的处理过程是一个原子操作。
在JDK 1.5之后,Java程序中才可以使用CAS操作,该操作由sun.misc.Unsafe类里面的compareAndSwapInt()和compareAndSwapLong()等几个方法包装提供,虚拟机在内部对这些方法做了特殊处理,即时编译出来的结果就是一条平台相关的处理器CAS指令,没有方法调用的过程,或者可以认为是无条件内联进去了。
由于Unsafe类不是提供给用户程序调用的类(Unsafe.getUnsafe()的代码中限制了只有启动类加载器(Bootstrap ClassLoader)加载的Class才能访问它),因此,如果不采用反射手段,我们只能通过其他的Java API来间接使用它,如J.U.C包里面的整数原子类,其中的compareAndSet()和getAndIncrement()等方法都使用了Unsafe类的CAS操作。
尽管CAS看起来很美,但显然这种操作无法涵盖互斥同步的所有使用场景,并且CAS从语义上来说并不是完美的,存在这样的一个逻辑漏洞:如果一个变量V初次读取的时候是A值,并且在准备赋值的时候检查到它仍然为A值,那我们就能说它的值没有被其他线程改变过了吗?如果在这段期间它的值曾经被改成了B,后来又被改回为A,那CAS操作就会误认为它从来没有被改变过。这个漏洞称为CAS操作的”ABA”问题。J.U.C包为了解决这个问题,提供了一个带有标记的原子引用类”AtomicStampedReference”,它可以通过控制变量值的版本来保证CAS的正确性。不过目前来说这个类比较“鸡肋”,大部分情况下ABA问题不会影响程序并发的正确性,如果需要解决ABA问题,改用传统的互斥同步可能会比原子类更高效。
无同步方案
要保证线程安全,并不是一定就要进行同步,两者没有因果关系。同步只是保证共享数据争用时的正确性的手段,如果一个方法本来就不涉及共享数据,那它自然就无须任何同步措施去保证正确性,因此会有一些代码天生就是线程安全的,笔者简单地介绍其中的两类。
可重入代码(Reentrant Code):这种代码也叫做纯代码(Pure Code),可以在代码执行的任何时刻中断它,转而去执行另外一段代码(包括递归调用它本身),而在控制权返回后,原来的程序不会出现任何错误。相对线程安全来说,可重入性是更基本的特性,它可以保证线程安全,即所有的可重入的代码都是线程安全的,但是并非所有的线程安全的代码都是可重入的。
可重入代码有一些共同的特征,例如不依赖存储在堆上的数据和公用的系统资源、用到的状态量都由参数中传入、不调用非可重入的方法等。我们可以通过一个简单的原则来判断代码是否具备可重入性:如果一个方法,它的返回结果是可以预测的,只要输入了相同的数据,就都能返回相同的结果,那它就满足可重入性的要求,当然也就是线程安全的。
线程本地存储(Thread Local Storage):如果一段代码中所需要的数据必须与其他代码共享,那就看看这些共享数据的代码是否能保证在同一个线程中执行?如果能保证,我们就可以把共享数据的可见范围限制在同一个线程之内,这样,无须同步也能保证线程之间不出现数据争用的问题。
符合这种特点的应用并不少见,大部分使用消费队列的架构模式(如“生产者-消费者”模式)都会将产品的消费过程尽量在一个线程中消费完,其中最重要的一个应用实例就是经典Web交互模型中的“一个请求对应一个服务器线程”(Thread-per-Request)的处理方式,这种处理方式的广泛应用使得很多Web服务端应用都可以使用线程本地存储来解决线程安全问题。
Java语言中,如果一个变量要被多线程访问,可以使用volatile关键字声明它为“易变的”;如果一个变量要被某个线程独享,Java中就没有类似C++中__declspec(thread)这样的关键字,不过还是可以通过java.lang.ThreadLocal类来实现线程本地存储的功能。每一个线程的Thread对象中都有一个ThreadLocalMap对象,这个对象存储了一组以ThreadLocal.threadLocalHashCode为键,以本地线程变量为值的K-V值对,ThreadLocal对象就是当前线程的ThreadLocalMap的访问入口,每一个ThreadLocal对象都包含了一个独一无二的threadLocalHashCode值,使用这个值就可以在线程K-V值对中找回对应的本地线程变量。
四、锁
锁优化
自旋锁与自适应自旋
互斥同步对性能最大的影响是阻塞的实现,挂起线程和恢复线程的操作都需要转入内核态中完成,这些操作给系统的并发性能带来了很大的压力。同时,虚拟机的开发团队也注意到在许多应用上,共享数据的锁定状态只会持续很短的一段时间,为了这段时间去挂起和恢复线程并不值得。如果物理机器有一个以上的处理器,能让两个或以上的线程同时并行执行,我们就可以让后面请求锁的那个线程“稍等一下”,但不放弃处理器的执行时间,看看持有锁的线程是否很快就会释放锁。为了让线程等待,我们只需让线程执行一个忙循环(自旋),这项技术就是所谓的自旋锁。
自旋锁在JDK 1.4.2中就已经引入,只不过默认是关闭的,可以使用-XX:+UseSpinning参数来开启,在JDK 1.6中就已经改为默认开启了。自旋等待不能代替阻塞,且先不说对处理器数量的要求,自旋等待本身虽然避免了线程切换的开销,但它是要占用处理器时间的,因此,如果锁被占用的时间很短,自旋等待的效果就会非常好,反之,如果锁被占用的时间很长,那么自旋的线程只会白白消耗处理器资源,而不会做任何有用的工作,反而会带来性能上的浪费。因此,自旋等待的时间必须要有一定的限度,如果自旋超过了限定的次数仍然没有成功获得锁,就应当使用传统的方式去挂起线程了。自旋次数的默认值是10次,用户可以使用参数-XX:PreBlockSpin来更改。
在JDK 1.6中引入了自适应的自旋锁。自适应意味着自旋的时间不再固定了,而是由前一次在同一个锁上的自旋时间及锁的拥有者的状态来决定。如果在同一个锁对象上,自旋等待刚刚成功获得过锁,并且持有锁的线程正在运行中,那么虚拟机就会认为这次自旋也很有可能再次成功,进而它将允许自旋等待持续相对更长的时间,比如100个循环。另外,如果对于某个锁,自旋很少成功获得过,那在以后要获取这个锁时将可能省略掉自旋过程,以避免浪费处理器资源。有了自适应自旋,随着程序运行和性能监控信息的不断完善,虚拟机对程序锁的状况预测就会越来越准确,虚拟机就会变得越来越“聪明”了。
锁消除
锁消除是指虚拟机即时编译器在运行时,对一些代码上要求同步,但是被检测到不可能存在共享数据竞争的锁进行消除(许多同步措施并不是程序员自己加入的)。锁消除的主要判定依据来源于逃逸分析的数据支持,如果判断在一段代码中,堆上的所有数据都不会逃逸出去从而被其他线程访问到,那就可以把它们当做栈上数据对待,认为它们是线程私有的,同步加锁自然就无须进行。
锁粗化
原则上,我们在编写代码的时候,总是推荐将同步块的作用范围限制得尽量小——只在共享数据的实际作用域中才进行同步,这样是为了使得需要同步的操作数量尽可能变小,如果存在锁竞争,那等待锁的线程也能尽快拿到锁。
大部分情况下,上面的原则都是正确的,但是如果一系列的连续操作都对同一个对象反复加锁和解锁,甚至加锁操作是出现在循环体中的,那即使没有线程竞争,频繁地进行互斥同步操作也会导致不必要的性能损耗。
轻量级锁
轻量级锁是JDK 1.6之中加入的新型锁机制,它名字中的“轻量级”是相对于使用操作系统互斥量来实现的传统锁而言的,因此传统的锁机制就称为“重量级”锁。首先需要强调一点的是,轻量级锁并不是用来代替重量级锁的,它的本意是在没有多线程竞争的前提下,减少传统的重量级锁使用操作系统互斥量产生的性能消耗。
要理解轻量级锁,以及后面会讲到的偏向锁的原理和运作过程,必须从HotSpot虚拟机的对象(对象头部分)的内存布局开始介绍。HotSpot虚拟机的对象头(Object Header)分为两部分信息,第一部分用于存储对象自身的运行时数据,如哈希码(HashCode)、GC分代年龄(Generational GC Age)等,这部分数据的长度在32位和64位的虚拟机中分别为32bit和64bit,官方称它为”Mark Word”,它是实现轻量级锁和偏向锁的关键。另外一部分用于存储指向方法区对象类型数据的指针,如果是数组对象的话,还会有一个额外的部分用于存储数组长度。
对象头信息是与对象自身定义的数据无关的额外存储成本,考虑到虚拟机的空间效率,Mark Word被设计成一个非固定的数据结构以便在极小的空间内存储尽量多的信息,它会根据对象的状态复用自己的存储空间。例如,在32位的HotSpot虚拟机中对象未被锁定的状态下,Mark Word的32bit空间中的25bit用于存储对象哈希码(HashCode),4bit用于存储对象分代年龄,2bit用于存储锁标志位,1bit固定为0,在其他状态(轻量级锁定、重量级锁定、GC标记、可偏向)下对象的存储内容见下图。

简单地介绍了对象的内存布局后,我们把话题返回到轻量级锁的执行过程上。在代码进入同步块的时候,如果此同步对象没有被锁定(锁标志位为“01”状态),虚拟机首先将在当前线程的栈帧中建立一个名为锁记录(Lock Record)的空间,用于存储锁对象目前的Mark Word的拷贝(官方把这份拷贝加了一个Displaced前缀,即Displaced Mark Word),这时候线程堆栈与对象头的状态如下图所示。

然后,虚拟机将使用CAS操作尝试将对象的Mark Word更新为指向Lock Record的指针。如果这个更新动作成功了,那么这个线程就拥有了该对象的锁,并且对象Mark Word的锁标志位(Mark Word的最后2bit)将转变为“00”,即表示此对象处于轻量级锁定状态,这时候线程堆栈与对象头的状态如下图所示。

如果这个更新操作失败了,虚拟机首先会检查对象的Mark Word是否指向当前线程的栈帧,如果只说明当前线程已经拥有了这个对象的锁,那就可以直接进入同步块继续执行,否则说明这个锁对象已经被其他线程抢占了。如果有两条以上的线程争用同一个锁,那轻量级锁就不再有效,要膨胀为重量级锁,锁标志的状态值变为“10”,Mark Word中存储的就是指向重量级锁(互斥量)的指针,后面等待锁的线程也要进入阻塞状态。
上面描述的是轻量级锁的加锁过程,它的解锁过程也是通过CAS操作来进行的,如果对象的Mark Word仍然指向着线程的锁记录,那就用CAS操作把对象当前的Mark Word和线程中复制的Displaced Mark Word替换回来,如果替换成功,整个同步过程就完成了。如果替换失败,说明有其他线程尝试过获取该锁,那就要在释放锁的同时,唤醒被挂起的线程。
轻量级锁能提升程序同步性能的依据是“对于绝大部分的锁,在整个同步周期内都是不存在竞争的”,这是一个经验数据。如果没有竞争,轻量级锁使用CAS操作避免了使用互斥量的开销,但如果存在锁竞争,除了互斥量的开销外,还额外发生了CAS操作,因此在有竞争的情况下,轻量级锁会比传统的重量级锁更慢。
偏向锁
偏向锁也是JDK 1.6中引入的一项锁优化,它的目的是消除数据在无竞争情况下的同步原语,进一步提高程序的运行性能。如果说轻量级锁是在无竞争的情况下使用CAS操作去消除同步使用的互斥量,那偏向锁就是在无竞争的情况下把整个同步都消除掉,连CAS操作都不做了。
偏向锁的“偏”,就是偏心的“偏”、偏袒的“偏”,它的意思是这个锁会偏向于第一个获得它的线程,如果在接下来的执行过程中,该锁没有被其他的线程获取,则持有偏向锁的线程将永远不需要再进行同步。
如果读者读懂了前面轻量级锁中关于对象头Mark Word与线程之间的操作过程,那偏向锁的原理理解起来就会很简单。假设当前虚拟机启用了偏向锁(启用参数-XX:+UseBiasedLocking,这是JDK 1.6的默认值),那么,当锁对象第一次被线程获取的时候,虚拟机将会把对象头中的标志位设为“01”,即偏向模式。同时使用CAS操作把获取到这个锁的线程的ID记录在对象的Mark Word之中,如果CAS操作成功,持有偏向锁的线程以后每次进入这个锁相关的同步块时,虚拟机都可以不再进行任何同步操作(例如Locking、Unlocking及对Mark Word的Update等)。
当有另外一个线程去尝试获取这个锁时,偏向模式就宣告结束。根据锁对象目前是否处于被锁定的状态,撤销偏向(Revoke Bias)后恢复到未锁定(标志位为“01”)或轻量级锁定(标志位为“00”)的状态,后续的同步操作就如上面介绍的轻量级锁那样执行。偏向锁、轻量级锁的状态转化及对象Mark Word的关系如下图所示。

偏向锁可以提高带有同步但无竞争的程序性能。它同样是一个带有效益权衡(Trade Off)性质的优化,也就是说,它并不一定总是对程序运行有利,如果程序中大多数的锁总是被多个不同的线程访问,那偏向模式就是多余的。在具体问题具体分析的前提下,有时候使用参数-XX:-UseBiasedLocking来禁止偏向锁优化反而可以提升性能。
五、ThreadLocal
ThreadLocal 关联了 Thread 与 ThreadLocalMap,ThreadLocalMap内部使用ThreadLocal.ThreadLocalMap.Entry 数组存储数据,Entry 以 ThreadLocal 作为 key ,且继承了 WeakReference 。ThreadLocalMap 使用线性探测法解决hash冲突。
六、同步工具
ReentrantLock (重入锁)
重入锁可以完全替代synchronized关键字。在JDK 5.0的早期版本中,重入锁的性能远远好于synchronized,但从JDK 6.0开始,JDK在synchronized上做了大量的优化,使得两者的性能差距并不大。
参见 [三、线程安全的实现方法 - 1. 互斥同步](#1. 互斥同步)
Semaphore (信号量)
信号量为多线程协作提供了更为强大的控制方法。广义上说,信号量是对锁的扩展。无论是内部锁synchronized还是重入锁ReentrantLock,一次都只允许一个线程访问一个资源,而信号量却可以指定多个线程,同时访问某一个资源。
在构造信号量对象时,必须要指定信号量的准入数,即同时能申请多少个许可。当每个线程每次只申请一个许可时,这就相当于指定了同时有多少个线程可以访问某一个资源。
acquire()方法尝试获得一个准入的许可。若无法获得,则线程会等待,直到有线程释放一个许可或者当前线程被中断。acquireUninterruptibly()方法和acquire()方法类似,但是不响应中断。tryAcquire()尝试获得一个许可,如果成功返回true,失败则返回false,它不会进行等待,立即返回。release()用于在线程访问资源结束后,释放一个许可,以使其他等待许可的线程可以进行资源访问。
ReadWriteLock (读写锁)
ReadWriteLock是JDK5中提供的读写分离锁。读写分离锁可以有效地帮助减少锁竞争,以提升系统性能。读写锁允许多个线程同时读。但是,考虑到数据完整性,写写操作和读写操作间依然是需要相互等待和持有锁的。
CountDownLatch (闭锁)
闭锁可以延迟线程的进度直到其到达终止状态。闭锁的作用相当于一扇门,在闭锁到达结束状态之前,这扇门一直是关闭的,并且没有任何线程能通过,当到达结束状态时,这扇门会打开并允许所有线程通过,当闭锁到达结束状态后,将不会再改变状态,因此这扇门将永远保持打开状态。闭锁可以用来确保某些活动直到其他活动都完成才继续执行。
CountDownLatch 是一种灵活的闭锁实现,可以使一个或多个线程等待一组事件发生。闭锁状态包括一个计数器,该计数器被初始化为一个整数,表示需要等待的事件数量。countDown方法递减计数器,表示有一个事件发生了,而await方法等待计数器到达零,这表示所有需要等待的事件都已发生。如果计数器的值非零,那么await会一直阻塞直到计数器为零,或者等待中的线程被中断,或者等待超时。
CyclicBarrier (栅栏)
栅栏类似与闭锁,能阻塞一组线程直到某个事件发生。栅栏与闭锁的区别在于,所有线程必须都到达栅栏位置,才能继续执行。闭锁用于等待事件,而栅栏用于等待其他线程。
Exchanger
七、线程池
ThreadPoolExecutor
为了能够更好地控制多线程,JDK提供了一套Executor框架,帮助开发人员有效地进行线程控制,其本质就是一个线程池。它的核心成员如下图所示。

以上成员均在java.util.concurrent包中,是JDK并发包的核心类。其中ThreadPoolExecutor表示一个线程池。Executors类则扮演着线程池工厂的角色,通过Executors可以取得一个拥有特定功能的线程池。从上图中亦可知,ThreadPoolExecutor类实现了Executor接口,因此通过这个接口,任何Runnable的对象都可以被ThreadPoolExecutor线程池调度。
构造方法
ThreadPoolExecutor 的构造方法如下:
1 | public ThreadPoolExecutor(int corePoolSize, |
各参数含义如下:
- corePoolSize:指定了线程池中的线程数量。
- maximumPoolSize:指定了线程池中的最大线程数量。
- keepAliveTime:当线程池线程数量超过corePoolSize时,多余的空闲线程的存活时间。即,超过corePoolSize的空闲线程,在多长时间内,会被销毁。
- unit:keepAliveTime的单位。
- workQueue:任务队列,保存被提交但尚未被执行的任务。
- threadFactory:线程工厂,用于创建线程,一般用默认的即可。
- handler:拒绝策略。当任务太多来不及处理,如何拒绝任务。默认拒绝策略是
AbortPolicy。
参数workQueue指被提交但未执行的任务队列,它是一个BlockingQueue接口的对象,仅用于存放Runnable对象。根据队列功能分类,在ThreadPoolExecutor的构造函数中可使用以下几种BlockingQueue。
直接提交的队列:该功能由SynchronousQueue对象提供。SynchronousQueue是一个特殊的BlockingQueue。SynchronousQueue没有容量,每一个插入操作都要等待一个相应的删除操作,反之,每一个删除操作都要等待对应的插入操作。如果使用SynchronousQueue,提交的任务不会被真实的保存,而总是将新任务提交给线程执行,如果没有空闲的进程,则尝试创建新的进程,如果进程数量已经达到最大值,则执行拒绝策略。因此,使用SynchronousQueue队列,通常要设置很大的maximumPoolSize值,否则很容易执行拒绝策略。
有界的任务队列:有界的任务队列可以使用ArrayBlockingQueue实现。ArrayBlockingQueue的构造函数必须带一个容量参数,表示该队列的最大容量,如下所示。
1
public ArrayBlockingQueue(int capacity)
当使用有界的任务队列时,若有新的任务需要执行,如果线程池的实际线程数小于corePoolSize,则会优先创建新的线程,若大于corePoolSize,则会将新任务加入等待队列。若等待队列已满,无法加入,则在总线程数不大于maximumPoolSize的前提下,创建新的线程执行任务。若大于maximumPoolSize,则执行拒绝策略。可见,有界队列仅当在任务队列装满时,才可能将线程数提升到corePoolSize以上,换言之,除非系统非常繁忙,否则确保核心线程数维持在在corePoolSize。
无界的任务队列:无界任务队列可以通过LinkedBlockingQueue类实现。与有界队列相比,除非系统资源耗尽,否则无界的任务队列不存在任务入队失败的情况。当有新的任务到来,系统的线程数小于corePoolSize时,线程池会生成新的线程执行任务,但当系统的线程数达到corePoolSize后,就不会继续增加。若后续仍有新的任务加入,而又没有空闲的线程资源,则任务直接进入队列等待。若任务创建和处理的速度差异很大,无界队列会保持快速增长,直到耗尽系统内存。
优先任务队列:优先任务队列是带有执行优先级的队列。它通过PriorityBlockingQueue实现,可以控制任务的执行先后顺序。它是一个特殊的无界队列。无论是有界队列ArrayBlockingQueue,还是未指定大小的无界队列LinkedBlockingQueue都是按照先进先出算法处理任务的。而PriorityBlockingQueue则可以根据任务自身的优先级顺序先后执行,在确保系统性能的同时,也能有很好的质量保证(总是确保高优先级的任务先执行)。
拒绝策略
ThreadPoolExecutor的最后一个参数指定了拒绝策略。也就是当任务数量超过系统实际承载能力时,该如何处理呢?这时就要用到拒绝策略了。拒绝策略可以说是系统超负荷运行时的补救措施,通常由于压力太大而引起的,也就是线程池中的线程已经用完了,无法继续为新任务服务,同时,等待队列中也已经排满了,再也塞不下新任务了。这时,我们就需要有一套机制,合理地处理这个问题。
JDK内置提供了四种拒绝策略,如下:
- AbortPolicy 策略:该策略会直接抛出异常,阻止系统正常工作。
- CallerRunsPolicy 策略:只要线程池未关闭,该策略直接在调用者线程中,运行当前被丢弃的任务。显然这样做不会真的丢弃任务,但是,任务提交线程的性能极有可能会急剧下降。
- DiscardOledestPolicy 策略:该策略将丢弃最老的一个请求,也就是即将被执行的一个任务,并尝试再次提交当前任务。
- DiscardPolicy 策略:该策略默默地丢弃无法处理的任务,不予任何处理。
ThreadFactory
线程池的线程来自于 ThreadFactory ,当线程池需要新建线程时,就会调用 ThreadFactory.newThread(Runnable r) 方法。
Executors
Executor框架提供了各种类型的线程池,Executors提供了以下常见工厂方法:
1 | public static ExecutorService newFixedThreadPool(int nThreads) |
以上工厂方法分别返回具有不同工作特性的线程池。
newFixedThreadPool()
该方法返回一个固定线程数量的线程池。该线程池中的线程数量始终不变。当有一个新的任务提交时,线程池中若有空闲线程,则立即执行。若没有,则新的任务会被暂存在一个任务队列中,待有线程空闲时,便处理在任务队列中的任务。该方法返回了一个corePoolSize和maximumPoolSize大小一样的,并且使用了LinkedBlockingQueue任务队列的线程池。因为对于固定大小的线程池而言,不存在线程数量的动态变化,因此corePoolSize和maximumPoolSize可以相等。同时,它使用无界队列存放无法立即执行的任务,当任务提交非常频繁的时候,该队列可能迅速膨胀,从而耗尽系统资源。
1 | public static ExecutorService newFixedThreadPool(int nThreads) { |
newSingleThreadExecutor()
该方法返回一个只有一个线程的线程池。若多余一个任务被提交到该线程池,任务会被保存在一个任务队列中,待线程空闲,按先入先出的顺序执行队列中的任务。该方法返回的单线程线程池,是newFixedThreadPool()方法的一种退化,只是简单的将线程池线程数量设置为1。
1 | public static ExecutorService newSingleThreadExecutor() { |
newCachedThreadPool()
该方法返回一个可根据实际情况调整线程数量的线程池。线程池的线程数量不确定,但若有空闲线程可以复用,则会优先使用可复用的线程。若所有线程均在工作,又有新的任务提交,则会创建新的线程处理任务。所有线程在当前任务执行完毕后,将返回线程池进行复用。该方法返回corePoolSize为0,maximumPoolSize无穷大的线程池,这意味着在没有任务时,该线程池内无线程,而当任务被提交时,该线程池会使用空闲的线程执行任务,若无空闲线程,则将任务加入SynchronousQueue队列,而SynchronousQueue队列是一种直接提交的队列,它总会迫使线程池增加新的线程执行任务。当任务执行完毕后,由于corePoolSize为0,因此空闲线程又会在指定时间内(60秒)被回收。对于newCachedThreadPool(),如果同时有大量任务被提交,而任务的执行又不那么快时,那么系统便会开启等量的线程处理,这样做法可能会很快耗尽系统的资源。
1 | public static ExecutorService newCachedThreadPool() { |
newSingleThreadScheduledExecutor()
该方法返回一个ScheduledExecutorService对象,线程池大小为1。ScheduledExecutorService接口在ExecutorService接口之上扩展了在给定时间执行某任务的功能,如在某个固定的延时之后执行,或者周期性执行某个任务。
1 | public static ScheduledExecutorService newSingleThreadScheduledExecutor() { |
newScheduledThreadPool()
该方法也返回一个ScheduledExecutorService对象,但该线程池可以指定线程数量。
1 | public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) { |
八、并发容器
ConcurrentHashMap
ConcurrentHashMap 是一个高效的并发HashMap。
CopyOnWriteArrayList
CopyOnWriteArrayList 是一个List,从名字看就是和ArrayList是一族的。在读多写少的场合,这个List的性能非常好,远远好于Vector。
CopyOnWriteArrayList 在读的时候不加锁,在新增更新删除时会加锁,实现也比较简单。
1 | private transient volatile Object[] array; |
CopyOnWriteArrayList 获取的迭代器不支持 remove , set, add 方法,被调用时会抛出 UnsupportedOperationException 异常。
ConcurrentLinkedQueue
ConcurrentLinkedQueue 高效的并发队列,使用链表实现。可以看做一个线程安全的LinkedList。
BlockingQueue
BlockingQueue 是一个接口,JDK内部通过链表、数组等方式实现了这个接口。表示阻塞队列,非常适合用于作为数据共享的通道。
ConcurrentSkipListMap
ConcurrentSkipListMap 是跳表的实现。这是一个Map,使用跳表的数据结构进行快速查找。
九、练习
有三个线程T1,T2,T3,怎么确保它们按顺序执行?
1 | package cn.thorxh.thread; |