jvm 垃圾收集与内存分配
老李 Lv4

Java与C++之间有一堵由内存动态分配和垃圾收集技术所围成的“高墙”,墙外面的人想进去,墙里面的人却想出来。

在Java内存运行时区域中,程序计数器、虚拟机栈、本地方法栈3个区域随线程而生,随线程而灭;栈中的栈帧随着方法的进入和退出而有条不紊地执行着出栈和入栈操作。每一个栈帧中分配多少内存基本上是在类结构确定下来时就已知的(尽管在运行期会由JIT编译器进行一些优化),因此这几个区域的内存分配和回收都具备确定性,在这几个区域内就不需要过多考虑回收的问题,因为方法结束或者线程结束时,内存自然就跟随着回收了。而Java堆和方法区则不一样,一个接口中的多个实现类需要的内存可能不一样,一个方法中的多个分支需要的内存也可能不一样,我们只有在程序处于运行期间时才能知道会创建哪些对象,这部分内存的分配和回收都是动态的,垃圾收集器所关注的是这部分内存。

垃圾收集器

一、对象已死吗?

1. 引用计数法

给对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加1;当引用失效时,计数器值就减1;任何时刻计数器为0的对象就是不可能再被使用的。引用计数算法(Reference Counting)的实现简单,判定效率也很高,在大部分情况下它都是一个不错的算法,但是它很难解决对象之间相互循环引用的问题。

2. 可达性分析算法

这个算法的基本思路就是通过一系列的称为”GC Roots”的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到GC Roots没有任何引用链相连(用图论的话来说,就是从GC Roots到这个对象不可达)时,则证明此对象是不可用的。

如图所示,对象object 5、object 6、object 7虽然互相有关联,但是它们到GC Roots是不可达的,所以它们将会被判定为是可回收的对象。

可达性分析算法判定对象是否可回收

在Java语言中,可作为GC Roots的对象包括下面几种:

  • 虚拟机栈(栈帧中的本地变量表)中引用的对象。
  • 方法区中类静态属性引用的对象。
  • 方法区中常量引用的对象。
  • 本地方法栈中JNI(即一般说的Native方法)引用的对象。

3. 再谈引用

在JDK 1.2之后,Java对引用的概念进行了扩充,将引用分为强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Weak Reference)、虚引用(Phantom Reference)4种,这4种引用强度依次逐渐减弱。

  • 强引用就是指在程序代码之中普遍存在的,类似”Object obj=new Object()”这类的引用,只要强引用还存在,垃圾收集器永远不会回收掉被引用的对象。若一个对象通过一系列强引用可到达,它就是强可达的(strongly reachable),那么它就不被回收。
  • 软引用是用来描述一些还有用但并非必需的对象。对于软引用关联着的对象,在系统将要发生内存溢出异常之前,将会把这些对象列进回收范围之中进行第二次回收。如果这次回收还没有足够的内存,才会抛出内存溢出异常。在JDK 1.2之后,提供了SoftReference类来实现软引用。
  • 弱引用也是用来描述非必需对象的,但是它的强度比软引用更弱一些,被弱引用关联的对象只能生存到下一次垃圾收集发生之前。当垃圾收集器工作时,无论当前内存是否足够,都会回收掉只被弱引用关联的对象。在JDK 1.2之后,提供了WeakReference类来实现弱引用。
  • 虚引用也称为幽灵引用或者幻影引用,它是最弱的一种引用关系。一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来取得一个对象实例。为一个对象设置虚引用关联的唯一目的就是能在这个对象被收集器回收时收到一个系统通知。在JDK 1.2之后,提供了PhantomReference类来实现虚引用。

软引用基本上和弱引用差不多,只是相比弱引用,它阻止垃圾回收期回收其指向的对象的能力强一些。如果一个对象是弱引用可到达,那么这个对象会被垃圾回收器接下来的回收周期销毁。但是如果是软引用可以到达,那么这个对象会停留在内存更时间上长一些。当内存不足时垃圾回收器才会回收这些软引用可到达的对象。

由于软引用可到达的对象比弱引用可达到的对象滞留内存时间会长一些,我们可以利用这个特性来做缓存。这样的话,你就可以节省了很多事情,垃圾回收器会关心当前哪种可到达类型以及内存的消耗程度来进行处理。

4. 生存还是死亡

即使在可达性分析算法中不可达的对象,也并非是“非死不可”的,这时候它们暂时处于“缓刑”阶段,要真正宣告一个对象死亡,至少要经历两次标记过程:如果对象在进行可达性分析后发现没有与GC Roots相连接的引用链,那它将会被第一次标记并且进行一次筛选,筛选的条件是此对象是否有必要执行finalize()方法。当对象没有覆盖finalize()方法,或者finalize()方法已经被虚拟机调用过(任何一个对象的finalize()方法都只会被系统自动调用一次,如果对象面临下一次回收,它的finalize()方法不会被再次执行),虚拟机将这两种情况都视为“没有必要执行”。

如果这个对象被判定为有必要执行finalize()方法,那么这个对象将会放置在一个叫做F-Queue的队列之中,并在稍后由一个由虚拟机自动建立的、低优先级的Finalizer线程去执行它。这里所谓的“执行”是指虚拟机会触发这个方法,但并不承诺会等待它运行结束,这样做的原因是,如果一个对象在finalize()方法中执行缓慢,或者发生了死循环(更极端的情况),将很可能会导致F-Queue队列中其他对象永久处于等待,甚至导致整个内存回收系统崩溃。finalize()方法是对象逃脱死亡命运的最后一次机会,稍后GC将对F-Queue中的对象进行第二次小规模的标记,如果对象要在finalize()中成功拯救自己——只要重新与引用链上的任何一个对象建立关联即可,譬如把自己(this关键字)赋值给某个类变量或者对象的成员变量,那在第二次标记时它将被移除出“即将回收”的集合;如果对象这时候还没有逃脱,那基本上它就真的被回收了。

二、垃圾收集算法

1. 标记-清除算法

最基础的收集算法是“标记-清除”(Mark-Sweep)算法,如同它的名字一样,算法分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象。之所以说它是最基础的收集算法,是因为后续的收集算法都是基于这种思路并对其不足进行改进而得到的。它的主要不足有两个:一个是效率问题,标记和清除两个过程的效率都不高;另一个是空间问题,标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致以后在程序运行过程中需要分配较大对象时,无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。”标记-清除”算法的示意图如下图所示。

“标记-清除”算法示意图

2. 复制算法

为了解决效率问题,一种称为“复制”(Copying)的收集算法出现了,它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。这样使得每次都是对整个半区进行内存回收,内存分配时也就不用考虑内存碎片等复杂情况,只要移动堆顶指针,按顺序分配内存即可,实现简单,运行高效。只是这种算法的代价是将内存缩小为了原来的一半,未免太高了一点。复制算法的执行过程如下图所示。

复制算法示意图

现在的商业虚拟机都采用这种收集算法来回收新生代,IBM公司的专门研究表明,新生代中的对象98%是“朝生夕死”的,所以并不需要按照1:1的比例来划分内存空间,而是将内存分为一块较大的Eden空间和两块较小的Survivor空间,每次使用Eden和其中一块Survivor。当回收时,将Eden和Survivor中还存活着的对象一次性地复制到另外一块Survivor空间上,最后清理掉Eden和刚才用过的Survivor空间。HotSpot虚拟机默认Eden和Survivor的大小比例是8:1,也就是每次新生代中可用内存空间为整个新生代容量的90%(80%+10%),只有10%的内存会被“浪费”。当然,98%的对象可回收只是一般场景下的数据,我们没有办法保证每次回收都只有不多于10%的对象存活,当Survivor空间不够用时,需要依赖其他内存(这里指老年代)进行分配担保(Handle Promotion)。

内存的分配担保就好比我们去银行借款,如果我们信誉很好,在98%的情况下都能按时偿还,于是银行可能会默认我们下一次也能按时按量地偿还贷款,只需要有一个担保人能保证如果我不能还款时,可以从他的账户扣钱,那银行就认为没有风险了。内存的分配担保也一样,如果另外一块Survivor空间没有足够空间存放上一次新生代收集下来的存活对象时,这些对象将直接通过分配担保机制进入老年代。

3. 标记-整理算法

复制收集算法在对象存活率较高时就要进行较多的复制操作,效率将会变低。更关键的是,如果不想浪费50%的空间,就需要有额外的空间进行分配担保,以应对被使用的内存中所有对象都100%存活的极端情况,所以在老年代一般不能直接选用这种算法。

根据老年代的特点,有人提出了另外一种“标记-整理”(Mark-Compact)算法,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存,“标记-整理”算法的示意图如下图所示。

“标记-整理”算法示意图

4. 分代收集算法

当前商业虚拟机的垃圾收集都采用“分代收集”(Generational Collection)算法,这种算法并没有什么新的思想,只是根据对象存活周期的不同将内存划分为几块。一般是把Java堆分为新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法。在新生代中,每次垃圾收集时都发现有大批对象死去,只有少量存活,那就选用复制算法,只需要付出少量存活对象的复制成本就可以完成收集。而老年代中因为对象存活率高、没有额外空间对它进行分配担保,就必须使用“标记—清理”或者“标记—整理”算法来进行回收。

三、垃圾收集器

JDK 1.7 Update 14 HotSpot虚拟机的垃圾收集器如下图所示。图中展示了7种作用于不同分代的收集器,如果两个收集器之间存在连线,就说明它们可以搭配使用。虚拟机所处的区域,则表示它是属于新生代收集器还是老年代收集器。

HotSpot虚拟机的垃圾收集器

1. Serial 收集器

Serial收集器是最基本、发展历史最悠久的收集器,曾经(在JDK 1.3.1之前)是虚拟机新生代收集的唯一选择。这个收集器是一个单线程的收集器,但它的“单线程”的意义并不仅仅说明它只会使用一个CPU或一条收集线程去完成垃圾收集工作,更重要的是在它进行垃圾收集时,必须暂停其他所有的工作线程,直到它收集结束。”Stop The World”这个名字也许听起来很酷,但这项工作实际上是由虚拟机在后台自动发起和自动完成的,在用户不可见的情况下把用户正常工作的线程全部停掉,这对很多应用来说都是难以接受的。下图示意了Serial/Serial Old收集器的运行过程。

Serial/Serial Old收集器运行示意图

Serial收集器是虚拟机运行在Client模式下的默认新生代收集器。它有着优于其他收集器的地方:简单而高效(与其他收集器的单线程比),对于限定单个CPU的环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得最高的单线程收集效率。在用户的桌面应用场景中,分配给虚拟机管理的内存一般来说不会很大,收集几十兆甚至一两百兆的新生代(仅仅是新生代使用的内存,桌面应用基本上不会再大了),停顿时间完全可以控制在几十毫秒最多一百多毫秒以内,只要不是频繁发生,这点停顿是可以接受的。所以,Serial收集器对于运行在Client模式下的虚拟机来说是一个很好的选择。

总结

新生代收集器,采用复制算法,串行收集器。在垃圾回收时应用程序中的所有线程都必须停止工作(stop the world)。Serial收集器实现简单,逻辑处理高效,使用单线程没有线程切换开销。在如单处理器等硬件平台不是很好的场合,性能表现可以超过并行收集器和并发收集器。

2. ParNew 收集器

ParNew收集器其实就是Serial收集器的多线程版本,除了使用多条线程进行垃圾收集之外,其余行为包括Serial收集器可用的所有控制参数(例如:-XX:SurvivorRatio、-XX:PretenureSizeThreshold、-XX:HandlePromotionFailure等)、收集算法、Stop The World、对象分配规则、回收策略等都与Serial收集器完全一样,在实现上,这两种收集器也共用了相当多的代码。ParNew收集器的工作过程如下图所示。

ParNew/Serial Old收集器运行示意图

ParNew收集器除了多线程收集之外,其他与Serial收集器相比并没有太多创新之处,但它却是许多运行在Server模式下的虚拟机中首选的新生代收集器,其中有一个与性能无关但很重要的原因是,除了Serial收集器外,目前只有它能与CMS收集器配合工作。

ParNew收集器在单CPU的环境中绝对不会有比Serial收集器更好的效果,甚至由于存在线程交互的开销,该收集器在通过超线程技术实现的两个CPU的环境中都不能百分之百地保证可以超越Serial收集器。当然,随着可以使用的CPU的数量的增加,它对于GC时系统资源的有效利用还是很有好处的。它默认开启的收集线程数与CPU的数量相同,在CPU非常多(譬如32个,现在CPU动辄就4核加超线程,服务器超过32个逻辑CPU的情况越来越多了)的环境下,可以使用-XX:ParallelGCThreads参数来限制垃圾收集的线程数。

总结

新生代收集器,采用复制算法,并行收集器。是Serial收集器的多线程版本。是许多运行在Server模式下的虚拟机中首选的新生代收集器,因为除了Serial收集器外,目前只有它能与CMS收集器配合工作。

注意 从ParNew收集器开始,后面还会接触到几款并发和并行的收集器。在大家可能产生疑惑之前,有必要先解释两个名词:并发和并行。这两个名词都是并发编程中的概念,在谈论垃圾收集器的上下文语境中,它们可以解释如下。

  • 并行(Parallel):指多条垃圾收集线程并行工作,但此时用户线程仍然处于等待状态。

  • 并发(Concurrent):指用户线程与垃圾收集线程同时执行(但不一定是并行的,可能会交替执行),用户程序在继续运行,而垃圾收集程序运行于另一个CPU上。

3. Parallel Scavenge 收集器

Parallel Scavenge收集器的特点是它的关注点与其他收集器不同,CMS等收集器的关注点是尽可能地缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目标则是达到一个可控制的吞吐量(Throughput)。所谓吞吐量就是CPU用于运行用户代码的时间与CPU总消耗时间的比值,即吞吐量=运行用户代码时间/(运行用户代码时间+垃圾收集时间),虚拟机总共运行了100分钟,其中垃圾收集花掉1分钟,那吞吐量就是99%。

停顿时间越短就越适合需要与用户交互的程序,良好的响应速度能提升用户体验,而高吞吐量则可以高效率地利用CPU时间,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务。

Parallel Scavenge收集器提供了两个参数用于精确控制吞吐量,分别是控制最大垃圾收集停顿时间的-XX:MaxGCPauseMillis参数以及直接设置吞吐量大小的-XX:GCTimeRatio参数。

MaxGCPauseMillis参数允许的值是一个大于0的毫秒数,收集器将尽可能地保证内存回收花费的时间不超过设定值。不过大家不要认为如果把这个参数的值设置得稍小一点就能使得系统的垃圾收集速度变得更快,GC停顿时间缩短是以牺牲吞吐量和新生代空间来换取的:系统把新生代调小一些,收集300MB新生代肯定比收集500MB快吧,这也直接导致垃圾收集发生得更频繁一些,原来10秒收集一次、每次停顿100毫秒,现在变成5秒收集一次、每次停顿70毫秒。停顿时间的确在下降,但吞吐量也降下来了。

GCTimeRatio参数的值应当是一个大于0且小于100的整数,也就是垃圾收集时间占总时间的比率,相当于是吞吐量的倒数。如果把此参数设置为19,那允许的最大GC时间就占总时间的5%(即1/(1+19)),默认值为99,就是允许最大1%(即1/(1+99))的垃圾收集时间。

由于与吞吐量关系密切,Parallel Scavenge收集器也经常称为“吞吐量优先”收集器。除上述两个参数之外,Parallel Scavenge收集器还有一个参数-XX:+UseAdaptiveSizePolicy值得关注。这是一个开关参数,当这个参数打开之后,就不需要手工指定新生代的大小(-Xmn)、Eden与Survivor区的比例(-XX:SurvivorRatio)、晋升老年代对象年龄(-XX:PretenureSizeThreshold)等细节参数了,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或者最大的吞吐量,这种调节方式称为GC自适应的调节策略(GC Ergonomics)[1]。如果读者对于收集器运作原来不太了解,手工优化存在困难的时候,使用Parallel Scavenge收集器配合自适应调节策略,把内存管理的调优任务交给虚拟机去完成将是一个不错的选择。只需要把基本的内存数据设置好(如-Xmx设置最大堆),然后使用MaxGCPauseMillis参数(更关注最大停顿时间)或GCTimeRatio(更关注吞吐量)参数给虚拟机设立一个优化目标,那具体细节参数的调节工作就由虚拟机完成了。自适应调节策略也是Parallel Scavenge收集器与ParNew收集器的一个重要区别。

总结

新生代收集器,采用复制算法,并行收集器。Parallel Scavenge收集器的关注点是达到一个可控制的吞吐量,此收集器提供GC自适应的调节策略,可以通过开关参数 -XX:+UseAdaptiveSizePolicy 开启。

4. Serial Old 收集器

Serial Old是Serial收集器的老年代版本,它同样是一个单线程收集器,使用“标记-整理”算法。这个收集器的主要意义也是在于给Client模式下的虚拟机使用。如果在Server模式下,那么它主要还有两大用途:一种用途是在JDK 1.5以及之前的版本中与Parallel Scavenge收集器搭配使用,另一种用途就是作为CMS收集器的后备预案,在并发收集发生Concurrent Mode Failure时使用。Serial Old收集器的工作过程如下图所示。

Serial/Serial Old收集器运行示意图

总结

老年代收集器,采用标记-整理算法,串行收集器。

需要说明一下,Parallel Scavenge收集器架构中本身有PS MarkSweep收集器来进行老年代收集,并非直接使用了Serial Old收集器,但是这个PS MarkSweep收集器与Serial Old的实现非常接近,所以在官方的许多资料中都是直接以Serial Old代替PS MarkSweep进行讲解。

5. Parallel Old 收集器

Parallel Old是Parallel Scavenge收集器的老年代版本,使用多线程和“标记-整理”算法。这个收集器是在JDK 1.6中才开始提供的,在此之前,新生代的Parallel Scavenge收集器一直处于比较尴尬的状态。原因是,如果新生代选择了Parallel Scavenge收集器,老年代除了Serial Old(PS MarkSweep)收集器外别无选择(还记得上面说过Parallel Scavenge收集器无法与CMS收集器配合工作吗?)。由于老年代Serial Old收集器在服务端应用性能上的“拖累”,使用了Parallel Scavenge收集器也未必能在整体应用上获得吞吐量最大化的效果,由于单线程的老年代收集中无法充分利用服务器多CPU的处理能力,在老年代很大而且硬件比较高级的环境中,这种组合的吞吐量甚至还不一定有ParNew加CMS的组合“给力”。

直到Parallel Old收集器出现后,“吞吐量优先”收集器终于有了比较名副其实的应用组合,在注重吞吐量以及CPU资源敏感的场合,都可以优先考虑Parallel Scavenge加Parallel Old收集器。Parallel Old收集器的工作过程如下图所示。

Parallel Scavenge/Parallel Old收集器运行示意图

总结

老年代收集器,采用标记-整理算法,并行收集器。

6. CMS 收集器

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用集中在互联网站或者B/S系统的服务端上,这类应用尤其重视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验。CMS收集器就非常符合这类应用的需求。

从名字(包含”Mark Sweep”)上就可以看出,CMS收集器是基于“标记—清除”算法实现的,它的运作过程相对于前面几种收集器来说更复杂一些,整个过程分为4个步骤,包括:

  1. 初始标记(CMS initial mark)

  2. 并发标记(CMS concurrent mark)

  3. 重新标记(CMS remark)

  4. 并发清除(CMS concurrent sweep)

其中,初始标记、重新标记这两个步骤仍然需要”Stop The World”。初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快,并发标记阶段就是进行GC RootsTracing的过程,而重新标记阶段则是为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短。

由于整个过程中耗时最长的并发标记和并发清除过程收集器线程都可以与用户线程一起工作,所以,从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。通过下图可以比较清楚地看到CMS收集器的运作步骤中并发和需要停顿的时间。

Concurrent Mark Sweep收集器运行示意图

CMS是一款优秀的收集器,它的主要优点在名字上已经体现出来了:并发收集、低停顿,Sun公司的一些官方文档中也称之为并发低停顿收集器(Concurrent Low Pause Collector)。但是CMS还远达不到完美的程度,它有以下3个明显的缺点:

CMS收集器对CPU资源非常敏感。其实,面向并发设计的程序都对CPU资源比较敏感。在并发阶段,它虽然不会导致用户线程停顿,但是会因为占用了一部分线程(或者说CPU资源)而导致应用程序变慢,总吞吐量会降低。CMS默认启动的回收线程数是(CPU数量+3)/4,也就是当CPU在4个以上时,并发回收时垃圾收集线程不少于25%的CPU资源,并且随着CPU数量的增加而下降。但是当CPU不足4个(譬如2个)时,CMS对用户程序的影响就可能变得很大,如果本来CPU负载就比较大,还分出一半的运算能力去执行收集器线程,就可能导致用户程序的执行速度忽然降低了50%,其实也让人无法接受。为了应付这种情况,虚拟机提供了一种称为“增量式并发收集器”(Incremental Concurrent Mark Sweep/i-CMS)的CMS收集器变种,所做的事情和单CPU年代PC机操作系统使用抢占式来模拟多任务机制的思想一样,就是在并发标记、清理的时候让GC线程、用户线程交替运行,尽量减少GC线程的独占资源的时间,这样整个垃圾收集的过程会更长,但对用户程序的影响就会显得少一些,也就是速度下降没有那么明显。实践证明,增量时的CMS收集器效果很一般,在目前版本中,i-CMS已经被声明为”deprecated”,即不再提倡用户使用。

CMS收集器无法处理浮动垃圾(Floating Garbage),可能出现”Concurrent Mode Failure”失败而导致另一次Full GC的产生。由于CMS并发清理阶段用户线程还在运行着,伴随程序运行自然就还会有新的垃圾不断产生,这一部分垃圾出现在标记过程之后,CMS无法在当次收集中处理掉它们,只好留待下一次GC时再清理掉。这一部分垃圾就称为“浮动垃圾”。也是由于在垃圾收集阶段用户线程还需要运行,那也就还需要预留有足够的内存空间给用户线程使用,因此CMS收集器不能像其他收集器那样等到老年代几乎完全被填满了再进行收集,需要预留一部分空间提供并发收集时的程序运作使用。在JDK 1.5的默认设置下,CMS收集器当老年代使用了68%的空间后就会被激活,这是一个偏保守的设置,如果在应用中老年代增长不是太快,可以适当调高参数-XX:CMSInitiatingOccupancyFraction的值来提高触发百分比,以便降低内存回收次数从而获取更好的性能,在JDK 1.6中,CMS收集器的启动阈值已经提升至92%。要是CMS运行期间预留的内存无法满足程序需要,就会出现一次”Concurrent Mode Failure”失败,这时虚拟机将启动后备预案:临时启用Serial Old收集器来重新进行老年代的垃圾收集,这样停顿时间就很长了。所以说参数-XX:CM SInitiatingOccupancyFraction设置得太高很容易导致大量”Concurrent Mode Failure”失败,性能反而降低。

CMS是一款基于“标记—清除”算法实现的收集器,收集结束时会有大量空间碎片产生。空间碎片过多时,将会给大对象分配带来很大麻烦,往往会出现老年代还有很大空间剩余,但是无法找到足够大的连续空间来分配当前对象,不得不提前触发一次Full GC。为了解决这个问题,CMS收集器提供了一个-XX:+UseCMSCompactAtFullCollection开关参数(默认就是开启的),用于在CMS收集器顶不住要进行FullGC时开启内存碎片的合并整理过程,内存整理的过程是无法并发的,空间碎片问题没有了,但停顿时间不得不变长。虚拟机设计者还提供了另外一个参数-XX:CMSFullGCsBeforeCompaction,这个参数是用于设置执行多少次不压缩的Full GC后,跟着来一次带压缩的(默认值为0,表示每次进入Full GC时都进行碎片整理)。

总结

老年代收集器,采用标记—清除算法,并发收集器。CMS收集器是一种以获取最短回收停顿时间为目标的收集器。

7. G1收集器

G1是一款面向服务端应用的垃圾收集器。HotSpot开发团队赋予它的使命是(在比较长期的)未来可以替换掉JDK 1.5中发布的CMS收集器。与其他GC收集器相比,G1具备如下特点。

并行与并发:G1能充分利用多CPU、多核环境下的硬件优势,使用多个CPU(CPU或者CPU核心)来缩短Stop-The-World停顿的时间,部分其他收集器原本需要停顿Java线程执行的GC动作,G1收集器仍然可以通过并发的方式让Java程序继续执行。

分代收集:与其他收集器一样,分代概念在G1中依然得以保留。虽然G1可以不需要其他收集器配合就能独立管理整个GC堆,但它能够采用不同的方式去处理新创建的对象和已经存活了一段时间、熬过多次GC的旧对象以获取更好的收集效果。

空间整合:与CMS的“标记—清理”算法不同,G1从整体来看是基于“标记—整理”算法实现的收集器,从局部(两个Region之间)上来看是基于“复制”算法实现的,但无论如何,这两种算法都意味着G1运作期间不会产生内存空间碎片,收集后能提供规整的可用内存。这种特性有利于程序长时间运行,分配大对象时不会因为无法找到连续内存空间而提前触发下一次GC。

可预测的停顿:这是G1相对于CMS的另一大优势,降低停顿时间是G1和CMS共同的关注点,但G1除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间不得超过N毫秒,这几乎已经是实时Java(RTSJ)的垃圾收集器的特征了。

在G1之前的其他收集器进行收集的范围都是整个新生代或者老年代,而G1不再是这样。使用G1收集器时,Java堆的内存布局就与其他收集器有很大差别,它将整个Java堆划分为多个大小相等的独立区域(Region),虽然还保留有新生代和老年代的概念,但新生代和老年代不再是物理隔离的了,它们都是一部分Region(不需要连续)的集合。

G1收集器之所以能建立可预测的停顿时间模型,是因为它可以有计划地避免在整个Java堆中进行全区域的垃圾收集。G1跟踪各个Region里面的垃圾堆积的价值大小(回收所获得的空间大小以及回收所需时间的经验值),在后台维护一个优先列表,每次根据允许的收集时间,优先回收价值最大的Region(这也就是Garbage-First名称的来由)。这种使用Region划分内存空间以及有优先级的区域回收方式,保证了G1收集器在有限的时间内可以获取尽可能高的收集效率。

G1把内存“化整为零”的思路,理解起来似乎很容易,但其中的实现细节却远远没有想象中那样简单,否则也不会从2004年Sun实验室发表第一篇G1的论文开始直到今天(将近10年时间)才开发出G1的商用版。笔者以一个细节为例:把Java堆分为多个Region后,垃圾收集是否就真的能以Region为单位进行了?听起来顺理成章,再仔细想想就很容易发现问题所在:Region不可能是孤立的。一个对象分配在某个Region中,它并非只能被本Region中的其他对象引用,而是可以与整个Java堆任意的对象发生引用关系。那在做可达性判定确定对象是否存活的时候,岂不是还得扫描整个Java堆才能保证准确性?这个问题其实并非在G1中才有,只是在G1中更加突出而已。在以前的分代收集中,新生代的规模一般都比老年代要小许多,新生代的收集也比老年代要频繁许多,那回收新生代中的对象时也面临相同的问题,如果回收新生代时也不得不同时扫描老年代的话,那么Minor GC的效率可能下降不少。

在G1收集器中,Region之间的对象引用以及其他收集器中的新生代与老年代之间的对象引用,虚拟机都是使用Remembered Set来避免全堆扫描的。G1中每个Region都有一个与之对应的Remembered Set,虚拟机发现程序在对Reference类型的数据进行写操作时,会产生一个Write Barrier暂时中断写操作,检查Reference引用的对象是否处于不同的Region之中(在分代的例子中就是检查是否老年代中的对象引用了新生代中的对象),如果是,便通过CardTable把相关引用信息记录到被引用对象所属的Region的Remembered Set之中。当进行内存回收时,在GC根节点的枚举范围中加入Remembered Set即可保证不对全堆扫描也不会有遗漏。

如果不计算维护Remembered Set的操作,G1收集器的运作大致可划分为以下几个步骤:

初始标记(Initial Marking)

并发标记(Concurrent Marking)

最终标记(Final Marking)

筛选回收(Live Data Counting and Evacuation)

对CMS收集器运作过程熟悉的读者,一定已经发现G1的前几个步骤的运作过程和CMS有很多相似之处。初始标记阶段仅仅只是标记一下GC Roots能直接关联到的对象,并且修改TAMS(Next Top at Mark Start)的值,让下一阶段用户程序并发运行时,能在正确可用的Region中创建新对象,这阶段需要停顿线程,但耗时很短。并发标记阶段是从GC Root开始对堆中对象进行可达性分析,找出存活的对象,这阶段耗时较长,但可与用户程序并发执行。而最终标记阶段则是为了修正在并发标记期间因用户程序继续运作而导致标记产生变动的那一部分标记记录,虚拟机将这段时间对象变化记录在线程Remembered Set Logs里面,最终标记阶段需要把Remembered Set Logs的数据合并到Remembered Set中,这阶段需要停顿线程,但是可并行执行。最后在筛选回收阶段首先对各个Region的回收价值和成本进行排序,根据用户所期望的GC停顿时间来制定回收计划,从Sun公司透露出来的信息来看,这个阶段其实也可以做到与用户程序一起并发执行,但是因为只回收一部分Region,时间是用户可控制的,而且停顿用户线程将大幅提高收集效率。通过图3-11可以比较清楚地看到G1收集器的运作步骤中并发和需要停顿的阶段。

G1收集器运行示意图

总结

8. 理解GC日志

每一种收集器的日志形式都是由它们自身的实现所决定的,换而言之,每个收集器的日志格式都可以不一样。但虚拟机设计者为了方便用户阅读,将各个收集器的日志都维持一定的共性,例如以下两段典型的GC日志:

1
2
33.125:[GC[DefNew:3324K->152K(3712K),0.0025925 secs]3324K->152K(11904K),0.0031680 secs]
100.667:[Full GC[Tenured:0 K->210K(10240K),0.0149142secs]4603K->210K(19456K),[Perm:2999K->2999K(21248K)],0.0150007 secs][Times:user=0.01 sys=0.00,real=0.02 secs]

最前面的数字“33.125:”和“100.667:”代表了GC发生的时间,这个数字的含义是从Java虚拟机启动以来经过的秒数。

GC日志开头的”[GC”和”[Full GC”说明了这次垃圾收集的停顿类型,而不是用来区分新生代GC还是老年代GC的。如果有”Full”,说明这次GC是发生了Stop-The-World的,例如下面这段新生代收集器ParNew的日志也会出现”[Full GC”(这一般是因为出现了分配担保失败之类的问题,所以才导致STW)。如果是调用System.gc()方法所触发的收集,那么在这里将显示”[Full GC(System)”。

1
[Full GC 283.736:[ParNew:261599K->261599K(261952K),0.0000288 secs]

接下来的”[DefNew”、”[Tenured”、”[Perm”表示GC发生的区域,这里显示的区域名称与使用的GC收集器是密切相关的,例如上面样例所使用的Serial收集器中的新生代名为”Default New Generation”,所以显示的是”[DefNew”。如果是ParNew收集器,新生代名称就会变为”[ParNew”,意为”Parallel New Generation”。如果采用Parallel Scavenge收集器,那它配套的新生代称为”PSYoungGen”,老年代和永久代同理,名称也是由收集器决定的。

后面方括号内部的”3324K->152K(3712K)”含义是“GC前该内存区域已使用容量->GC后该内存区域已使用容量(该内存区域总容量)”。而在方括号之外的”3324K->152K(11904K)”表示“GC前Java堆已使用容量->GC后Java堆已使用容量(Java堆总容量)”。

再往后,”0.0025925 secs”表示该内存区域GC所占用的时间,单位是秒。有的收集器会给出更具体的时间数据,如”[Times:user=0.01 sys=0.00,real=0.02 secs]”,这里面的user、sys和real与Linux的time命令所输出的时间含义一致,分别代表用户态消耗的CPU时间、内核态消耗的CPU事件和操作从开始到结束所经过的墙钟时间(Wall Clock Time)。CPU时间与墙钟时间的区别是,墙钟时间包括各种非运算的等待耗时,例如等待磁盘I/O、等待线程阻塞,而CPU时间不包括这些耗时,但当系统有多CPU或者多核的话,多线程操作会叠加这些CPU时间,所以读者看到user或sys时间超过real时间是完全正常的。

9. 垃圾收集器参数总结

四、内存分配与回收策略

Java技术体系中所提倡的自动内存管理最终可以归结为自动化地解决了两个问题:给对象分配内存以及回收分配给对象的内存。

对象的内存分配,往大方向讲,就是在堆上分配(但也可能经过JIT编译后被拆散为标量类型并间接地栈上分配),对象主要分配在新生代的Eden区上,如果启动了本地线程分配缓冲,将按线程优先在TLAB上分配。少数情况下也可能会直接分配在老年代中,分配的规则并不是百分之百固定的,其细节取决于当前使用的是哪一种垃圾收集器组合,还有虚拟机中与内存相关的参数的设置。

选择哪种分配方式由Java堆是否规整决定,而Java堆是否规整又由所采用的垃圾收集器是否带有压缩整理功能决定。因此,在使用Serial、ParNew等带Compact过程的收集器时,系统采用的分配算法是指针碰撞,而使用CMS这种基于Mark-Sweep算法的收集器时,通常采用空闲列表。

1. 对象优先在Eden分配

大多数情况下,对象在新生代Eden区中分配。当Eden区没有足够空间进行分配时,虚拟机将发起一次Minor GC。

虚拟机提供了-XX:+PrintGCDetails这个收集器日志参数,告诉虚拟机在发生垃圾收集行为时打印内存回收日志,并且在进程退出的时候输出当前的内存各区域分配情况。

2. 大对象直接进入老年代

所谓的大对象是指,需要大量连续内存空间的Java对象,最典型的大对象就是那种很长的字符串以及数组。大对象对虚拟机的内存分配来说就是一个坏消息,经常出现大对象容易导致内存还有不少空间时就提前触发垃圾收集以获取足够的连续空间来“安置”它们。

虚拟机提供了一个-XX:PretenureSizeThreshold参数(默认值为15),令大于这个设置值的对象直接在老年代分配。这样做的目的是避免在Eden区及两个Survivor区之间发生大量的内存复制(复习一下:新生代采用复制算法收集内存)。

3. 长期存活的对象将进入老年代

既然虚拟机采用了分代收集的思想来管理内存,那么内存回收时就必须能识别哪些对象应放在新生代,哪些对象应放在老年代中。为了做到这点,虚拟机给每个对象定义了一个对象年龄(Age)计数器。如果对象在Eden出生并经过第一次Minor GC后仍然存活,并且能被Survivor容纳的话,将被移动到Survivor空间中,并且对象年龄设为1。对象在Survivor区中每“熬过”一次Minor GC,年龄就增加1岁,当它的年龄增加到一定程度(默认为15岁),就将会被晋升到老年代中。对象晋升老年代的年龄阈值,可以通过参数-XX:MaxTenuringThreshold设置。

4. 动态对象年龄判定

为了能更好地适应不同程序的内存状况,虚拟机并不是永远地要求对象的年龄必须达到了MaxTenuringThreshold才能晋升老年代,如果在Survivor空间中相同年龄所有对象大小的总和大于Survivor空间的一半,年龄大于或等于该年龄的对象就可以直接进入老年代,无须等到MaxTenuringThreshold中要求的年龄。

5. 空间分配担保

在发生Minor GC之前,虚拟机会先检查老年代最大可用的连续空间是否大于新生代所有对象总空间,如果这个条件成立,那么Minor GC可以确保是安全的。如果不成立,则虚拟机会查看HandlePromotionFailure设置值是否允许担保失败。如果允许,那么会继续检查老年代最大可用的连续空间是否大于历次晋升到老年代对象的平均大小,如果大于,将尝试着进行一次Minor GC,尽管这次Minor GC是有风险的;如果小于,或者HandlePromotionFailure设置不允许冒险,那这时要改为进行一次Full GC。

下面解释一下“冒险”是冒了什么风险,前面提到过,新生代使用复制收集算法,但为了内存利用率,只使用其中一个Survivor空间来作为轮换备份,因此当出现大量对象在Minor GC后仍然存活的情况(最极端的情况就是内存回收后新生代中所有对象都存活),就需要老年代进行分配担保,把Survivor无法容纳的对象直接进入老年代。与生活中的贷款担保类似,老年代要进行这样的担保,前提是老年代本身还有容纳这些对象的剩余空间,一共有多少对象会活下来在实际完成内存回收之前是无法明确知道的,所以只好取之前每一次回收晋升到老年代对象容量的平均大小值作为经验值,与老年代的剩余空间进行比较,决定是否进行Full GC来让老年代腾出更多空间。

取平均值进行比较其实仍然是一种动态概率的手段,也就是说,如果某次Minor GC存活后的对象突增,远远高于平均值的话,依然会导致担保失败(Handle Promotion Failure)。如果出现了HandlePromotionFailure失败,那就只好在失败后重新发起一次Full GC。虽然担保失败时绕的圈子是最大的,但大部分情况下都还是会将HandlePromotionFailure开关打开,避免Full GC过于频繁。

性能监控与故障处理工具

  • jps JVM Process Status Tool, 显示指定系统内所有的 HotSpot 虚拟机进程
  • jstat JVM Statistics Monitoring Tool, 用于收集 HotSpot 虚拟机各方面的运行数据
  • jinfo Configuration Info For Java, 显示虚拟机配置信息
  • jmap Memory Map for Java, 生成虚拟机的内存转储快照(heapdump 文件)
  • jhat JVM Heap Dump Browser, 用于分析 heapdump 文件, 它会建立一个 HTTP/HTML 服务器, 让用户可以在浏览器上查看分析结果
  • jstack Stack Trace for Java, 显示虚拟机的线程快照

一、jps:虚拟机进程状况工具

jps 主要选项

二、jstat:虚拟机统计信息监视工具

jstat(JVM Statistics Monitoring Tool)是用于监视虚拟机各种运行状态信息的命令行工具。它可以显示本地或者远程虚拟机进程中的类装载、内存、垃圾收集、JIT编译等运行数据。

jstat 主要选项

三、jinfo:Java配置信息工具

jinfo(Configuration Info for Java)的作用是实时地查看和调整虚拟机各项参数。使用jps命令的-v参数可以查看虚拟机启动时显式指定的参数列表,但如果想知道未被显式指定的参数的系统默认值,除了去找资料外,就只能使用jinfo的-flag选项进行查询了(如果只限于JDK 1.6或以上版本的话,使用java-XX:+PrintFlagsFinal查看参数默认值也是一个很好的选择),jinfo还可以使用-sysprops选项把虚拟机进程的System.getProperties()的内容打印出来。这个命令在JDK 1.5时期已经随着Linux版的JDK发布,当时只提供了信息查询的功能,JDK 1.6之后,jinfo在Windows和Linux平台都有提供,并且加入了运行期修改参数的能力,可以使用-flag[+|-]name或者-flag name=value修改一部分运行期可写的虚拟机参数值。JDK 1.6中,jinfo对于Windows平台功能仍然有较大限制,只提供了最基本的-flag选项。

四、jmap:Java内存映像工具

jmap(Memory Map for Java)命令用于生成堆转储快照(一般称为heapdump或dump文件)。如果不使用jmap命令,要想获取Java堆转储快照,还有一些比较“暴力”的手段:譬如-XX:+HeapDumpOnOutOfMemoryError参数,可以让虚拟机在OOM异常出现之后自动生成dump文件,通过-XX:+HeapDumpOnCtrlBreak参数则可以使用[Ctrl]+[Break]键让虚拟机生成dump文件,又或者在Linux系统下通过Kill-3命令发送进程退出信号“吓唬”一下虚拟机,也能拿到dump文件。

jmap的作用并不仅仅是为了获取dump文件,它还可以查询finalize执行队列、Java堆和永久代的详细信息,如空间使用率、当前用的是哪种收集器等。

jmap 主要选项

五、jstack:Java堆栈跟踪工具

jstack(Stack Trace for Java)命令用于生成虚拟机当前时刻的线程快照(一般称为threaddump或者javacore文件)。线程快照就是当前虚拟机内每一条线程正在执行的方法堆栈的集合,生成线程快照的主要目的是定位线程出现长时间停顿的原因,如线程间死锁、死循环、请求外部资源导致的长时间等待等都是导致线程长时间停顿的常见原因。线程出现停顿的时候通过jstack来查看各个线程的调用堆栈,就可以知道没有响应的线程到底在后台做些什么事情,或者等待着什么资源。

jstack 主要选项

六、HSDIS:JIT生成代码反汇编

在Java虚拟机规范中,详细描述了虚拟机指令集中每条指令的执行过程、执行前后对操作数栈、局部变量表的影响等细节。这些细节描述与Sun的早期虚拟机(Sun Classic VM)高度吻合,但随着技术的发展,高性能虚拟机真正的细节实现方式已经渐渐与虚拟机规范所描述的内容产生了越来越大的差距,虚拟机规范中的描述逐渐成了虚拟机实现的“概念模型”——即实现只能保证规范描述等效。基于这个原因,我们分析程序的执行语义问题(虚拟机做了什么)时,在字节码层面上分析完全可行,但分析程序的执行行为问题(虚拟机是怎样做的、性能如何)时,在字节码层面上分析就没有什么意义了,需要通过其他方式解决。

分析程序如何执行,通过软件调试工具(GDB、Windbg等)来断点调试是最常见的手段,但是这样的调试方式在Java虚拟机中会遇到很大困难,因为大量执行代码是通过JIT编译器动态生成到CodeBuffer中的,没有很简单的手段来处理这种混合模式的调试(不过相信虚拟机开发团队内部肯定是有内部工具的)。因此,不得不通过一些特别的手段来解决问题,基于这种背景,本节的主角——HSDIS插件就正式登场了。

HSDIS是一个Sun官方推荐的HotSpot虚拟机JIT编译代码的反汇编插件,它包含在HotSpot虚拟机的源码之中,但没有提供编译后的程序。在Project Kenai的网站也可以下载到单独的源码。它的作用是让HotSpot的-XX:+PrintAssembly指令调用它来把动态生成的本地代码还原为汇编代码输出,同时还生成了大量非常有价值的注释,这样我们就可以通过输出的代码来分析问题。读者可以根据自己的操作系统和CPU类型从Project Kenai的网站上下载编译好的插件,直接放到JDK_HOME/jre/bin/client和JDK_HOME/jre/bin/server目录中即可。如果没有找到所需操作系统(譬如Windows的就没有)的成品,那就得自己使用源码编译一下。

案例分析与实战

一、在高性能硬件上部署程序

目前主要有两种方式

  1. 通过64位JDK来使用大内存

  2. 使用若干个32位虚拟机建立逻辑集群来利用硬件资源

使用64位JDK来管理大内存,需要考虑下面可能面临的问题:

  • 内存回收导致的长时间停顿。
  • 需要保证程序足够稳定,因为这种应用要是产生堆溢出几乎就无法产生堆转储快照(因为要产生十几GB乃至更大的Dump文件),哪怕产生了快照也几乎无法进行分析。
  • 相同程序在64位JDK消耗的内存一般比32位JDK大,这是由于指针膨胀,以及数据类型对齐补白等因素导致的。

使用若干个32位虚拟机建立逻辑集群来利用硬件资源,需要考虑下面可能面临的问题:

  • 尽量避免节点竞争全局的资源,最典型的就是磁盘竞争,各个节点如果同时访问某个磁盘文件的话(尤其是并发写操作容易出现问题),很容易导致IO异常。
  • 很难最高效率地利用某些资源池,譬如连接池,一般都是在各个节点建立自己独立的连接池,这样有可能导致一些节点池满了而另外一些节点仍有较多空余。尽管可以使用集中式的JNDI,但这个有一定复杂性并且可能带来额外的性能开销。
  • 各个节点仍然不可避免地受到32位的内存限制,在32位Windows平台中每个进程只能使用2GB的内存,考虑到堆以外的内存开销,堆一般最多只能开到1.5GB。在某些Linux或UNIX系统(如Solaris)中,可以提升到3GB乃至接近4GB的内存,但32位中仍然受最高4GB(232)内存的限制。
  • 大量使用本地缓存(如大量使用HashMap作为K/V缓存)的应用,在逻辑集群中会造成较大的内存浪费,因为每个逻辑节点上都有一份缓存,这时候可以考虑把本地缓存改为集中式缓存。